清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer

医学 无线电技术 放射科 随机森林 人工智能 神经组阅片室 逻辑回归 接收机工作特性 朴素贝叶斯分类器 数据集 结直肠癌 癌症 支持向量机 计算机科学 内科学 精神科 神经学
作者
Zhenyu Shu,Dewang Mao,Qiaowei Song,Yuyun Xu,Peipei Pang,Yang Zhang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (2): 1002-1013 被引量:33
标识
DOI:10.1007/s00330-021-08242-9
摘要

To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion (EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI negative. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, diffusion-weighted imaging, and enhanced T1-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regression, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities of 0.901 and 0.885, respectively.The joint model demonstrated the best diagnostic performance for the preoperative prediction of EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction.• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer. • Machine learning can improve the accuracy of predicting EMVI in rectal cancer. • Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的忆灵完成签到 ,获得积分10
刚刚
4秒前
ceeray23应助科研通管家采纳,获得10
8秒前
你要学好完成签到 ,获得积分10
10秒前
10秒前
小事完成签到 ,获得积分10
11秒前
CHRIS发布了新的文献求助10
11秒前
gmc完成签到 ,获得积分10
11秒前
5433完成签到 ,获得积分10
13秒前
小郭发布了新的文献求助10
15秒前
桐桐应助CHRIS采纳,获得10
21秒前
牛马完成签到,获得积分10
21秒前
涛1完成签到 ,获得积分10
50秒前
碗碗豆喵完成签到 ,获得积分10
52秒前
Brave完成签到,获得积分10
55秒前
负责以山完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
苗条丹南完成签到 ,获得积分10
1分钟前
m李完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
1分钟前
1分钟前
叼面包的数学狗完成签到 ,获得积分10
1分钟前
oxear完成签到,获得积分10
1分钟前
小郭完成签到,获得积分10
1分钟前
快乐的芷巧完成签到,获得积分10
1分钟前
xfy完成签到,获得积分10
1分钟前
张振宇完成签到 ,获得积分10
1分钟前
Balance Man完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
2分钟前
LELE完成签到 ,获得积分10
2分钟前
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
忧伤的慕梅完成签到 ,获得积分10
2分钟前
HY完成签到 ,获得积分10
2分钟前
sprouthui完成签到 ,获得积分10
2分钟前
华仔应助唠叨的若男采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076070
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839