已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer

医学 无线电技术 放射科 随机森林 人工智能 神经组阅片室 逻辑回归 接收机工作特性 朴素贝叶斯分类器 数据集 结直肠癌 癌症 支持向量机 计算机科学 内科学 精神科 神经学
作者
Zhenyu Shu,Dewang Mao,Qiaowei Song,Yuyun Xu,Peipei Pang,Yang Zhang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (2): 1002-1013 被引量:37
标识
DOI:10.1007/s00330-021-08242-9
摘要

To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion (EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI negative. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, diffusion-weighted imaging, and enhanced T1-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regression, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities of 0.901 and 0.885, respectively.The joint model demonstrated the best diagnostic performance for the preoperative prediction of EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction.• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer. • Machine learning can improve the accuracy of predicting EMVI in rectal cancer. • Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳雨发布了新的文献求助10
3秒前
4秒前
power完成签到,获得积分10
5秒前
Bin_Liu发布了新的文献求助10
13秒前
凌L完成签到,获得积分10
18秒前
动听的谷秋完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助50
24秒前
dagangwood完成签到 ,获得积分10
24秒前
去码头整点薯条完成签到 ,获得积分10
25秒前
專注完美近乎苛求完成签到 ,获得积分10
25秒前
追寻夜香完成签到 ,获得积分10
26秒前
35秒前
mihua完成签到,获得积分10
39秒前
Lucas应助zzz采纳,获得10
39秒前
领导范儿应助~峰~采纳,获得10
39秒前
脑洞疼应助Alex采纳,获得30
41秒前
震动的平松完成签到 ,获得积分10
41秒前
42秒前
坚定的小蘑菇完成签到 ,获得积分10
44秒前
尘染完成签到 ,获得积分10
46秒前
47秒前
斯文败类应助科研通管家采纳,获得10
47秒前
李爱国应助科研通管家采纳,获得30
47秒前
winnie发布了新的文献求助10
47秒前
今后应助科研通管家采纳,获得10
47秒前
48秒前
晟sheng完成签到 ,获得积分10
50秒前
美好善斓完成签到 ,获得积分10
51秒前
田様应助sayshh采纳,获得10
55秒前
橘子海完成签到 ,获得积分10
57秒前
1分钟前
呆呆完成签到 ,获得积分10
1分钟前
Alex发布了新的文献求助60
1分钟前
winnie完成签到,获得积分10
1分钟前
共享精神应助啊哈采纳,获得10
1分钟前
1分钟前
1分钟前
沈竑宇完成签到,获得积分10
1分钟前
萌小鱼完成签到 ,获得积分10
1分钟前
邋遢大王发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909554
求助须知:如何正确求助?哪些是违规求助? 4185866
关于积分的说明 12998542
捐赠科研通 3952896
什么是DOI,文献DOI怎么找? 2167698
邀请新用户注册赠送积分活动 1186181
关于科研通互助平台的介绍 1092971