Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer

医学 无线电技术 放射科 随机森林 人工智能 神经组阅片室 逻辑回归 接收机工作特性 朴素贝叶斯分类器 数据集 结直肠癌 癌症 支持向量机 计算机科学 内科学 精神科 神经学
作者
Zhenyu Shu,Dewang Mao,Qiaowei Song,Yuyun Xu,Peipei Pang,Yang Zhang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (2): 1002-1013 被引量:30
标识
DOI:10.1007/s00330-021-08242-9
摘要

To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion (EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI negative. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, diffusion-weighted imaging, and enhanced T1-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regression, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities of 0.901 and 0.885, respectively.The joint model demonstrated the best diagnostic performance for the preoperative prediction of EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction.• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer. • Machine learning can improve the accuracy of predicting EMVI in rectal cancer. • Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到,获得积分10
刚刚
泪七龙发布了新的文献求助10
1秒前
zero完成签到,获得积分10
1秒前
等待彩虹发布了新的文献求助10
1秒前
五月拾旧发布了新的文献求助10
1秒前
Caesar完成签到,获得积分10
2秒前
禹依白完成签到,获得积分20
2秒前
领导范儿应助123采纳,获得10
3秒前
D4发布了新的文献求助10
4秒前
科目三应助欢喜怀绿采纳,获得10
5秒前
田様应助随梦而飞采纳,获得10
7秒前
8秒前
8秒前
10秒前
wanci应助科研打工狗采纳,获得10
10秒前
11秒前
新明发布了新的文献求助10
13秒前
LL关闭了LL文献求助
13秒前
15秒前
16秒前
16秒前
王一二发布了新的文献求助10
16秒前
852应助玛琪玛小姐的狗采纳,获得10
17秒前
我是老大应助小赵采纳,获得10
17秒前
19秒前
21秒前
21秒前
甜甜玫瑰应助FYhan采纳,获得10
21秒前
科研打工狗完成签到,获得积分10
22秒前
VDC应助健康的沂采纳,获得30
22秒前
23秒前
Hello应助Aria采纳,获得10
23秒前
完美世界应助新明采纳,获得10
24秒前
25秒前
25秒前
25秒前
风音发布了新的文献求助10
26秒前
26秒前
horain驳回了今后应助
28秒前
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233011
求助须知:如何正确求助?哪些是违规求助? 2879662
关于积分的说明 8212270
捐赠科研通 2547168
什么是DOI,文献DOI怎么找? 1376574
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067