Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer

医学 无线电技术 放射科 随机森林 人工智能 神经组阅片室 逻辑回归 接收机工作特性 朴素贝叶斯分类器 数据集 结直肠癌 癌症 支持向量机 计算机科学 内科学 精神科 神经学
作者
Zhenyu Shu,Dewang Mao,Qiaowei Song,Yuyun Xu,Peipei Pang,Yang Zhang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (2): 1002-1013 被引量:30
标识
DOI:10.1007/s00330-021-08242-9
摘要

To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion (EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI negative. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, diffusion-weighted imaging, and enhanced T1-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regression, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities of 0.901 and 0.885, respectively.The joint model demonstrated the best diagnostic performance for the preoperative prediction of EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction.• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer. • Machine learning can improve the accuracy of predicting EMVI in rectal cancer. • Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kumarr发布了新的文献求助10
刚刚
刚刚
时尚语梦发布了新的文献求助10
刚刚
苹果酸奶完成签到,获得积分10
1秒前
标致小伙发布了新的文献求助10
2秒前
2秒前
2秒前
科研民工发布了新的文献求助10
2秒前
Owen应助sun采纳,获得10
2秒前
handsomecat发布了新的文献求助10
2秒前
乐乐关注了科研通微信公众号
2秒前
2秒前
Kriemhild完成签到,获得积分10
3秒前
dz完成签到,获得积分10
3秒前
小可发布了新的文献求助10
3秒前
夜雨声烦完成签到,获得积分10
3秒前
MrCoolWu发布了新的文献求助10
3秒前
过时的不评完成签到,获得积分10
4秒前
4秒前
4秒前
月儿发布了新的文献求助10
5秒前
落落完成签到 ,获得积分10
5秒前
羊羊完成签到 ,获得积分20
5秒前
宁听白发布了新的文献求助10
6秒前
rookie_b0完成签到,获得积分10
6秒前
6秒前
wangyanyan完成签到,获得积分20
6秒前
标致小伙完成签到,获得积分10
7秒前
7秒前
Harlotte发布了新的文献求助10
8秒前
8秒前
潦草发布了新的文献求助10
8秒前
丘比特应助Ll采纳,获得10
9秒前
9秒前
yu完成签到 ,获得积分10
9秒前
小蘑菇应助zzznznnn采纳,获得10
9秒前
Orange应助俊秀的白猫采纳,获得30
10秒前
深情安青应助小可采纳,获得10
10秒前
10秒前
情怀应助pearl采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759