AHNA: Adaptive representation learning for attributed heterogeneous networks

随机游动 计算机科学 节点(物理) 骨料(复合) 代表(政治) 路径(计算) 嵌入 理论计算机科学 数据挖掘 人工智能 拓扑(电路) 数学 计算机网络 组合数学 法学 材料科学 复合材料 工程类 统计 政治 结构工程 政治学
作者
Lin Shu,Chuan Chen,Xingxing Xing,Xiangke Liao,Zibin Zheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (2): 1157-1185 被引量:3
标识
DOI:10.1002/int.22664
摘要

Meta-path-based random walk strategy has attracted tremendous attention in heterogeneous network representation, which can capture network semantics with heterogeneous neighborhoods of nodes. Despite the success of meta-path-based random walk strategy in plain heterogeneous networks which contain no attributes, it remains unexplored how meta-path-based random walk strategy could be utilized on attributed heterogeneous networks to simultaneously capture structural heterogeneity and attribute proximity. Moreover, the importance of node attributes and structural relations generally varies across data sets, thus requiring careful considerations when they are incorporated into representations. To tackle these problems, we propose a novel method, Attributed Heterogeneous Network embedding based on Aggregate-path (AHNA), which generates aggregate-path-based random walks on attributed heterogeneous networks and adaptively fuses topological structures and node attributes based on the learned importance. Specifically, AHNA first converts node attributes to additional links in the network to deal with the heterogeneity of structures and attributes, which is followed by an adaptive random walk strategy to strike the importance balance between node attributes and topological structures, thereby generating high-quality representations. Extensive experiments are conducted on three real-world data sets, where AHNA outperforms state-of-the-art approaches by up to 22.7%, 2.6%, and 2.3% on link prediction, community detection, and node classification, respectively. Moreover, our qualitative analysis indicates that AHNA can capture different balances of topological structures and node attributes on various data sets and thus boost the quality of node representations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fernanda完成签到,获得积分10
1秒前
1秒前
Demo应助CC采纳,获得10
2秒前
ddd发布了新的文献求助10
2秒前
3秒前
zoeyliu发布了新的文献求助10
3秒前
4秒前
平淡的发卡完成签到 ,获得积分10
5秒前
5秒前
苦哈哈发布了新的文献求助10
5秒前
5秒前
积极的板栗完成签到 ,获得积分10
6秒前
我在实验室完成签到,获得积分10
6秒前
20231125完成签到,获得积分10
6秒前
季冬十五完成签到 ,获得积分10
7秒前
依旧完成签到,获得积分10
7秒前
瞿绮彤完成签到,获得积分10
7秒前
yangluyao发布了新的文献求助10
7秒前
SciGPT应助追寻笑寒采纳,获得10
7秒前
雷子发布了新的文献求助10
8秒前
8秒前
完美世界应助xhuryts采纳,获得10
9秒前
9秒前
荷西完成签到,获得积分10
10秒前
阿波完成签到,获得积分10
10秒前
Ava应助weiv采纳,获得10
10秒前
Chem完成签到,获得积分10
11秒前
Bink发布了新的文献求助10
11秒前
11秒前
草没味关注了科研通微信公众号
12秒前
小欢完成签到,获得积分10
12秒前
14秒前
llllly发布了新的文献求助10
14秒前
16秒前
111发布了新的文献求助10
16秒前
武子阳关注了科研通微信公众号
17秒前
呢喃完成签到,获得积分10
17秒前
will发布了新的文献求助30
18秒前
缓慢幼旋完成签到,获得积分20
18秒前
朱南晴完成签到,获得积分10
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222211
求助须知:如何正确求助?哪些是违规求助? 2870793
关于积分的说明 8172331
捐赠科研通 2537863
什么是DOI,文献DOI怎么找? 1369824
科研通“疑难数据库(出版商)”最低求助积分说明 645597
邀请新用户注册赠送积分活动 619373