A hybrid CNN-LSTM model for high resolution melting curve classification

计算机科学 卷积神经网络 人工智能 支持向量机 模式识别(心理学)
作者
Fatma Ozge Ozkok,Mete Çelik
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103168-103168 被引量:14
标识
DOI:10.1016/j.bspc.2021.103168
摘要

High resolution melting (HRM) curve analysis is an efficient, correct, and rapid technique for analyzing real-time polymerase chain reaction (PCR) results. HRM curves are formed based on increasing temperature and decreasing amount of fluorescent dye in real-time PCR process. The shapes of them are unique for each species due to the sequence, length, and GC content of species' DNA. In the literature, the classification of HRM curves is usually conducted through visual inspection and a limited number of data mining methods have been used to classify these curves. However, it becomes challenging as the number of species and their samples and the number of closely related species increase. In this study, a hybrid classification model, which is based on convolutional neural network (CNN) and long short-term memory (LSTM) models, is proposed to classify HRM curves, efficiently. In the proposed CNN-LSTM model, CNN model was used for feature extraction, and LSTM model was used for classification. It takes both the HRM curves and derivative curves as inputs and gives the predicted species of HRM curves as outputs. The performance of the proposed CNN-LSTM model was compared with that of CNN and support vector machines (SVM) approaches. The results show that the proposed CNN-LSTM model outperforms other models. The accuracy, macro-average of F1, specificity, precision, and recall values of the proposed model were 0.96±0.02,0.95±0.02,1±0,0.96±0.02, and 0.96±0.02, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccy完成签到,获得积分20
2秒前
Heidi发布了新的文献求助10
2秒前
炙热甜瓜发布了新的文献求助10
2秒前
危机的小丸子关注了科研通微信公众号
3秒前
4秒前
充电宝应助幸福果汁采纳,获得10
6秒前
想毕业的小橙子完成签到,获得积分10
8秒前
葡萄成熟发布了新的文献求助10
9秒前
wxh完成签到,获得积分10
9秒前
xiaopingbing完成签到 ,获得积分10
11秒前
蓝蔚蓝完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI2S应助花痴的冰蓝采纳,获得10
12秒前
科研通AI2S应助花痴的冰蓝采纳,获得10
12秒前
12秒前
16秒前
赘婿应助minjeong采纳,获得30
19秒前
儒雅沛凝发布了新的文献求助10
19秒前
桐桐应助糊涂的清醒者采纳,获得10
19秒前
24秒前
纯真的老黑完成签到,获得积分10
26秒前
26秒前
27秒前
李梦琦发布了新的文献求助10
28秒前
28秒前
30秒前
30秒前
海亦完成签到,获得积分10
31秒前
31秒前
31秒前
木穹完成签到,获得积分10
33秒前
Akim应助顾北采纳,获得10
33秒前
33秒前
星辰大海应助陶醉冷亦采纳,获得10
34秒前
Orange应助李梦琦采纳,获得10
34秒前
天天快乐应助言十采纳,获得10
34秒前
34秒前
35秒前
李爱国应助sdahjjyk采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136252
求助须知:如何正确求助?哪些是违规求助? 2787284
关于积分的说明 7780707
捐赠科研通 2443292
什么是DOI,文献DOI怎么找? 1299034
科研通“疑难数据库(出版商)”最低求助积分说明 625318
版权声明 600888