Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets

血管内超声 人工智能 计算机科学 卷积神经网络 分割 管腔(解剖学) 雅卡索引 豪斯多夫距离 模式识别(心理学) 计算机视觉 放射科 医学 外科
作者
Pablo J. Blanco,Paulo G. P. Ziemer,Carlos A. Bulant,Yasushi Ueki,Ronald Bass,Lorenz Räber,Pedro A. Lemos,Héctor M. García‐García
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102262-102262 被引量:19
标识
DOI:10.1016/j.media.2021.102262
摘要

Segmentation of lumen and vessel contours in intravascular ultrasound (IVUS) pullbacks is an arduous and time-consuming task, which demands adequately trained human resources. In the present study, we propose a machine learning approach to automatically extract lumen and vessel boundaries from IVUS datasets. The proposed approach relies on the concatenation of a deep neural network to deliver a preliminary segmentation, followed by a Gaussian process (GP) regressor to construct the final lumen and vessel contours. A multi-frame convolutional neural network (MFCNN) exploits adjacency information present in longitudinally neighboring IVUS frames, while the GP regression method filters high-dimensional noise, delivering a consistent representation of the contours. Overall, 160 IVUS pullbacks (63 patients) from the IBIS-4 study (Integrated Biomarkers and Imaging Study-4, Trial NCT00962416), were used in the present work. The MFCNN algorithm was trained with 100 IVUS pullbacks (8427 manually segmented frames), was validated with 30 IVUS pullbacks (2583 manually segmented frames) and was blindly tested with 30 IVUS pullbacks (2425 manually segmented frames). Image and contour metrics were used to characterize model performance by comparing ground truth (GT) and machine learning (ML) contours. Median values (interquartile range, IQR) of the Jaccard index for lumen and vessel were 0.913, [0.882,0.935] and 0.940, [0.917,0.957], respectively. Median values (IQR) of the Hausdorff distance for lumen and vessel were 0.196mm, [0.146,0.275]mm and 0.163mm, [0.122,0.234]mm, respectively. Also, the mean value of lumen area predictions, and limits of agreement were -0.19mm2, [1.1,-1.5]mm2, while the mean value and limits of agreement of plaque burden were 0.0022, [0.082,-0.078]. The results obtained with the model developed in this work allow us to conclude that the proposed machine learning approach delivers accurate segmentations in terms of image metrics, contour metrics and clinically relevant variables, enabling its use in clinical routine by mitigating the costs involved in the manual management of IVUS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不解释发布了新的文献求助30
1秒前
瘾9完成签到,获得积分10
1秒前
穿多点发布了新的文献求助10
2秒前
huxi发布了新的文献求助10
2秒前
李爱国应助汤汤公主采纳,获得10
2秒前
3秒前
屈狒狒完成签到,获得积分10
4秒前
4秒前
泥肿大发布了新的文献求助10
4秒前
小白发布了新的文献求助10
4秒前
陈淑玲完成签到,获得积分10
4秒前
虚幻春天发布了新的文献求助10
5秒前
kaicunY关注了科研通微信公众号
5秒前
周昊完成签到,获得积分10
5秒前
山真页完成签到,获得积分10
5秒前
6秒前
Serein完成签到,获得积分10
6秒前
吃不到葡萄完成签到,获得积分20
7秒前
yjn发布了新的文献求助10
7秒前
我是老大应助橙橙采纳,获得10
8秒前
香蕉觅云应助天南采纳,获得10
8秒前
9秒前
屈狒狒发布了新的文献求助10
9秒前
雨桃发布了新的文献求助10
9秒前
赘婿应助想毕业的小橙子采纳,获得10
9秒前
科研狗发布了新的文献求助10
10秒前
10秒前
科目三应助郝宝真采纳,获得10
10秒前
脑洞疼应助Ahuang采纳,获得10
11秒前
11秒前
领导范儿应助mmmmmeducn采纳,获得10
12秒前
Wang发布了新的文献求助10
13秒前
滴滴滴完成签到,获得积分10
13秒前
13秒前
大模型应助平淡的半青采纳,获得10
14秒前
Bruce Lin完成签到,获得积分10
14秒前
14秒前
meili发布了新的文献求助10
15秒前
桐桐应助魁梧的灵枫采纳,获得10
15秒前
CodeCraft应助雨桃采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144189
求助须知:如何正确求助?哪些是违规求助? 2795795
关于积分的说明 7816709
捐赠科研通 2451879
什么是DOI,文献DOI怎么找? 1304729
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419