清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets

血管内超声 人工智能 计算机科学 卷积神经网络 分割 管腔(解剖学) 雅卡索引 豪斯多夫距离 模式识别(心理学) 计算机视觉 放射科 医学 外科
作者
Pablo J. Blanco,Paulo G. P. Ziemer,Carlos A. Bulant,Yasushi Ueki,Ronald Bass,Lorenz Räber,Pedro A. Lemos,Héctor M. García‐García
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102262-102262 被引量:23
标识
DOI:10.1016/j.media.2021.102262
摘要

Segmentation of lumen and vessel contours in intravascular ultrasound (IVUS) pullbacks is an arduous and time-consuming task, which demands adequately trained human resources. In the present study, we propose a machine learning approach to automatically extract lumen and vessel boundaries from IVUS datasets. The proposed approach relies on the concatenation of a deep neural network to deliver a preliminary segmentation, followed by a Gaussian process (GP) regressor to construct the final lumen and vessel contours. A multi-frame convolutional neural network (MFCNN) exploits adjacency information present in longitudinally neighboring IVUS frames, while the GP regression method filters high-dimensional noise, delivering a consistent representation of the contours. Overall, 160 IVUS pullbacks (63 patients) from the IBIS-4 study (Integrated Biomarkers and Imaging Study-4, Trial NCT00962416), were used in the present work. The MFCNN algorithm was trained with 100 IVUS pullbacks (8427 manually segmented frames), was validated with 30 IVUS pullbacks (2583 manually segmented frames) and was blindly tested with 30 IVUS pullbacks (2425 manually segmented frames). Image and contour metrics were used to characterize model performance by comparing ground truth (GT) and machine learning (ML) contours. Median values (interquartile range, IQR) of the Jaccard index for lumen and vessel were 0.913, [0.882,0.935] and 0.940, [0.917,0.957], respectively. Median values (IQR) of the Hausdorff distance for lumen and vessel were 0.196mm, [0.146,0.275]mm and 0.163mm, [0.122,0.234]mm, respectively. Also, the mean value of lumen area predictions, and limits of agreement were -0.19mm2, [1.1,-1.5]mm2, while the mean value and limits of agreement of plaque burden were 0.0022, [0.082,-0.078]. The results obtained with the model developed in this work allow us to conclude that the proposed machine learning approach delivers accurate segmentations in terms of image metrics, contour metrics and clinically relevant variables, enabling its use in clinical routine by mitigating the costs involved in the manual management of IVUS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个兴趣使然的人完成签到,获得积分10
31秒前
大模型应助Sandy采纳,获得30
37秒前
胡杨树2006完成签到,获得积分10
1分钟前
1分钟前
无端发布了新的文献求助10
1分钟前
丢硬币的小孩完成签到,获得积分10
2分钟前
加贝完成签到 ,获得积分10
2分钟前
2分钟前
PeterLin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
安静的小孙完成签到,获得积分20
3分钟前
3分钟前
Mannone发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助30
4分钟前
花花公子完成签到,获得积分10
4分钟前
4分钟前
P_Chem完成签到,获得积分10
4分钟前
Ava应助科研通管家采纳,获得10
5分钟前
华仔应助无端采纳,获得10
5分钟前
害羞的裘完成签到 ,获得积分10
5分钟前
5分钟前
无端发布了新的文献求助10
6分钟前
Mannone完成签到,获得积分10
6分钟前
Mannone发布了新的文献求助10
6分钟前
6分钟前
夜雨发布了新的文献求助10
6分钟前
6分钟前
Sandy发布了新的文献求助30
6分钟前
Ashao完成签到 ,获得积分10
6分钟前
beginnerofsci完成签到 ,获得积分10
7分钟前
Sandy完成签到,获得积分0
7分钟前
Thnine完成签到,获得积分10
7分钟前
marvelou完成签到,获得积分10
7分钟前
7分钟前
WW发布了新的文献求助30
7分钟前
可爱的函函应助WW采纳,获得10
8分钟前
lyj完成签到 ,获得积分10
8分钟前
满意的伊完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918377
求助须知:如何正确求助?哪些是违规求助? 4190969
关于积分的说明 13015552
捐赠科研通 3960813
什么是DOI,文献DOI怎么找? 2171434
邀请新用户注册赠送积分活动 1189443
关于科研通互助平台的介绍 1097849