ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention

计算机科学 脆弱性(计算) 注意力网络 图形 人工神经网络 人工智能 数据挖掘 理论计算机科学 计算机安全
作者
Min Li,Chunfang Li,Shuailou Li,Yanna Wu,Boyang Zhang,Yu Wen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 243-259 被引量:10
标识
DOI:10.1007/978-3-030-86890-1_14
摘要

Vulnerability is one of the main causes of network intrusion. An effective way to mitigate security threats is to find and repair vulnerabilities as soon as possible. Traditional vulnerability detection methods are limited by expert knowledge. Existing deep learning-based methods neglect the connection between semantic graphs and cannot effectively deal with the structure information. Graph neural network brings new insight into vulnerability detection. However, benign nodes on the graph account for a large proportion, resulting in vulnerability information could be disturbed by them. To address the limitations of existing vulnerability detection approaches, in this paper, we propose ACGVD, a vulnerability detection method by constructing a graph network with attention. We first combine multiple semantic graphs together to form a more comprehensive graph. We then adopt the Graph neural network instead of the sequence-based model to automatically analyze the comprehensive graph. In order to solve the problem that the vulnerability information could be covered up, we add a double-level attention mechanism to the graph model. We also add a novel classification layer to extract the high-level features of the code. To make the experiment more realistic, the model is trained over the latest published real-world dataset. The experiment results demonstrate that compared with state-of-the-art methods, our model ACGVD achieves 5.01%, 13.89%, and 8.27% improvement in accuracy, recall and F1-score, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OhoOu发布了新的文献求助10
刚刚
刚刚
shanshan发布了新的文献求助10
1秒前
2秒前
YIYI完成签到,获得积分20
2秒前
wanci应助immm采纳,获得10
2秒前
JIAN关注了科研通微信公众号
3秒前
共享精神应助mole采纳,获得30
3秒前
3秒前
4秒前
4秒前
爆米花应助ClaudiaCY采纳,获得10
5秒前
6秒前
一壶古酒应助胖虎采纳,获得50
6秒前
大胆的一刀完成签到,获得积分10
7秒前
cjlumm发布了新的文献求助10
8秒前
贤惠的翰发布了新的文献求助10
9秒前
9秒前
9秒前
MC番薯发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
科研通AI2S应助旺旺采纳,获得10
11秒前
坚强的纸鹤完成签到,获得积分20
12秒前
Lucas应助土豪的醉香采纳,获得10
12秒前
PhDLi完成签到,获得积分10
12秒前
香蕉诗蕊举报jinggaier求助涉嫌违规
13秒前
斯文败类应助承一采纳,获得10
13秒前
13秒前
15秒前
yuanshl1985发布了新的文献求助30
16秒前
16秒前
BenBen发布了新的文献求助10
17秒前
坦率灵槐应助Nanami_ii采纳,获得10
17秒前
坦率灵槐应助沉静的灵松采纳,获得10
18秒前
Akim应助yuanyuan采纳,获得10
18秒前
未央应助搞怪的鹤采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
潇洒的如松完成签到,获得积分10
21秒前
火星上的曼彤完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501