ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention

计算机科学 脆弱性(计算) 注意力网络 图形 人工神经网络 人工智能 数据挖掘 理论计算机科学 计算机安全
作者
Min Li,Chunfang Li,Shuailou Li,Yanna Wu,Boyang Zhang,Yu Wen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 243-259 被引量:10
标识
DOI:10.1007/978-3-030-86890-1_14
摘要

Vulnerability is one of the main causes of network intrusion. An effective way to mitigate security threats is to find and repair vulnerabilities as soon as possible. Traditional vulnerability detection methods are limited by expert knowledge. Existing deep learning-based methods neglect the connection between semantic graphs and cannot effectively deal with the structure information. Graph neural network brings new insight into vulnerability detection. However, benign nodes on the graph account for a large proportion, resulting in vulnerability information could be disturbed by them. To address the limitations of existing vulnerability detection approaches, in this paper, we propose ACGVD, a vulnerability detection method by constructing a graph network with attention. We first combine multiple semantic graphs together to form a more comprehensive graph. We then adopt the Graph neural network instead of the sequence-based model to automatically analyze the comprehensive graph. In order to solve the problem that the vulnerability information could be covered up, we add a double-level attention mechanism to the graph model. We also add a novel classification layer to extract the high-level features of the code. To make the experiment more realistic, the model is trained over the latest published real-world dataset. The experiment results demonstrate that compared with state-of-the-art methods, our model ACGVD achieves 5.01%, 13.89%, and 8.27% improvement in accuracy, recall and F1-score, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗣音完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
干净的冰淇淋完成签到,获得积分10
3秒前
无花果应助清秀向卉采纳,获得10
4秒前
cwx发布了新的文献求助10
5秒前
sonnet发布了新的文献求助10
6秒前
8秒前
15373601956完成签到,获得积分10
9秒前
hetao完成签到,获得积分10
9秒前
淡定雅山完成签到,获得积分10
10秒前
MJX完成签到,获得积分10
10秒前
11秒前
12秒前
mm发布了新的文献求助10
12秒前
Vespa应助夏青荷采纳,获得10
13秒前
14秒前
Amanda应助屈尔蝶采纳,获得10
14秒前
明亮冬易完成签到,获得积分10
15秒前
15秒前
Answer发布了新的文献求助10
16秒前
xqk发布了新的文献求助10
16秒前
17秒前
liwenyu2002发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
黄科研完成签到,获得积分10
20秒前
魄魄olm完成签到,获得积分10
20秒前
一鸣发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
xqk完成签到,获得积分10
23秒前
wjx666777发布了新的文献求助20
24秒前
qiongqiong完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228176
求助须知:如何正确求助?哪些是违规求助? 2875980
关于积分的说明 8193492
捐赠科研通 2543153
什么是DOI,文献DOI怎么找? 1373552
科研通“疑难数据库(出版商)”最低求助积分说明 646803
邀请新用户注册赠送积分活动 621303