ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention

计算机科学 脆弱性(计算) 注意力网络 图形 人工神经网络 人工智能 数据挖掘 理论计算机科学 计算机安全
作者
Min Li,Chunfang Li,Shuailou Li,Yanna Wu,Boyang Zhang,Yu Wen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 243-259 被引量:10
标识
DOI:10.1007/978-3-030-86890-1_14
摘要

Vulnerability is one of the main causes of network intrusion. An effective way to mitigate security threats is to find and repair vulnerabilities as soon as possible. Traditional vulnerability detection methods are limited by expert knowledge. Existing deep learning-based methods neglect the connection between semantic graphs and cannot effectively deal with the structure information. Graph neural network brings new insight into vulnerability detection. However, benign nodes on the graph account for a large proportion, resulting in vulnerability information could be disturbed by them. To address the limitations of existing vulnerability detection approaches, in this paper, we propose ACGVD, a vulnerability detection method by constructing a graph network with attention. We first combine multiple semantic graphs together to form a more comprehensive graph. We then adopt the Graph neural network instead of the sequence-based model to automatically analyze the comprehensive graph. In order to solve the problem that the vulnerability information could be covered up, we add a double-level attention mechanism to the graph model. We also add a novel classification layer to extract the high-level features of the code. To make the experiment more realistic, the model is trained over the latest published real-world dataset. The experiment results demonstrate that compared with state-of-the-art methods, our model ACGVD achieves 5.01%, 13.89%, and 8.27% improvement in accuracy, recall and F1-score, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
程琳完成签到,获得积分20
2秒前
3秒前
卓哥发布了新的文献求助10
3秒前
科研通AI5应助sansan采纳,获得10
4秒前
4秒前
4秒前
脑洞疼应助杰森斯坦虎采纳,获得10
4秒前
6秒前
7秒前
研友_QQC完成签到,获得积分10
7秒前
NeuroWhite完成签到,获得积分10
7秒前
7秒前
搜索v完成签到,获得积分10
8秒前
liuchuck完成签到 ,获得积分10
8秒前
8秒前
8秒前
猫独秀完成签到,获得积分10
8秒前
10秒前
buno应助yuefeng采纳,获得10
10秒前
yiming完成签到,获得积分10
10秒前
落落发布了新的文献求助10
11秒前
清秋若月完成签到 ,获得积分10
11秒前
11秒前
呵呵呵呵完成签到,获得积分10
12秒前
12秒前
远方发布了新的文献求助10
13秒前
zxc111关注了科研通微信公众号
13秒前
14秒前
nanhe698发布了新的文献求助10
14秒前
Huang完成签到,获得积分10
14秒前
碳土不凡完成签到 ,获得积分10
15秒前
15秒前
淡淡采白发布了新的文献求助10
16秒前
16秒前
17秒前
Akim应助dingdong采纳,获得10
17秒前
17秒前
17秒前
satchzhao发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808