Performance evaluation of SWAN ST6 physics forced by ERA5 wind fields for wave prediction in an enclosed basin

环境科学 地质学 海洋工程 风浪 风力发电 湍流
作者
Burak Aydoğan,Berna Ayat
出处
期刊:Ocean Engineering [Elsevier]
卷期号:240: 109936- 被引量:2
标识
DOI:10.1016/j.oceaneng.2021.109936
摘要

Abstract In this study, the performance of SWAN (Simulating WAves Nearshore) spectral wave model ST6 physics forced by ERA5 reanalysis wind data were evaluated in predicting the wave properties in an enclosed basin, the Black Sea. ERA5 wind data were validated against in-situ measurements. Although two data match quite well, a 10–20% underestimation in wind speeds and velocity components was found. Spectral wave modeling study was conducted in two phases. In the first phase, 16 model setup combinations were generated using default parameterizations of SWAN spectral wave model with different physics (Westhuysen, Komen, Janssen, ST6) and with different wind sources (ERA5, ERA-Interim, and CFSv2). The model setups forced by ERA5 winds had the highest correlation values and in combination with ST6 physics performed better than the others in the prediction of wave heights. At the next stage, this model setup was calibrated at two stations by conducting 82 different parameterizations. Chosen model parameterization with overall satisfying performance was validated at five buoys. Comparisons among similar runtime model runs with timesteps up to 60 min and iteration steps up to four, show that higher timesteps with higher iterations give better results than lower time steps with one iteration. Debias and wind scaling parameters were found to be the most significant at adjusting wave heights. Comparison with previous calibration studies indicated that model runs based on calibrated ST6 physics parameterization and forced by ERA5 winds provided an increased accuracy of wave height predictions in the Black Sea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Rui采纳,获得10
刚刚
coolkid完成签到 ,获得积分10
刚刚
贼拉瘦的美神完成签到,获得积分10
1秒前
tsy完成签到 ,获得积分10
2秒前
April发布了新的文献求助20
2秒前
3秒前
今后应助不安豁采纳,获得10
4秒前
huifang发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
67发布了新的文献求助10
5秒前
代萌萌完成签到,获得积分10
5秒前
啊哈哈哈发布了新的文献求助10
6秒前
6秒前
四喜格格完成签到,获得积分10
7秒前
科研通AI5应助Laus采纳,获得10
7秒前
Godspeed发布了新的文献求助10
8秒前
悦耳的乐松完成签到,获得积分10
9秒前
星星泡饭发布了新的文献求助10
9秒前
着急的语儿完成签到,获得积分10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
差劲先森完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科目三应助goodgoodstudy采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Wu发布了新的文献求助10
10秒前
10秒前
lemon应助科研通管家采纳,获得20
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
打打应助聪聪great采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
11秒前
无名完成签到,获得积分10
11秒前
打打应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762