Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images

规范化(社会学) 卷积神经网络 人工智能 模式识别(心理学) 计算机科学 深度学习 磁共振弥散成像 曲线下面积 有效扩散系数 医学 放射科 磁共振成像 人类学 社会学 药代动力学 内科学
作者
Liyuan Cui,Han Shan-hua,Shouliang Qi,Yang Duan,Yan Kang,Yu Luo
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (4): 551-566 被引量:17
标识
DOI:10.3233/xst-210861
摘要

BACKGROUND: Acute ischemic stroke (AIS) results in high morbidity, disability, and mortality. Early and automatic diagnosis of AIS can help clinicians administer the appropriate interventions. OBJECTIVE: To develop a deep symmetric 3D convolutional neural network (DeepSym-3D-CNN) for automated AIS diagnosis via diffusion-weighted imaging (DWI) images. METHODS: This study includes 190 study subjects (97 AIS and 93 Non-AIS) by collecting both DWI and Apparent Diffusion Coefficient (ADC) images. 3D DWI brain images are split into left and right hemispheres and input into two paths. A map with 125×253×14×12 features is extracted by each path of Inception Modules. After the features computed from two paths are subtracted through L-2 normalization, four multi-scale convolution layers produce the final predation. Three comparative models using DWI images including MedicalNet with transfer learning, Simple DeepSym-3D-CNN (each 3D Inception Module is replaced by a simple 3D-CNN layer), and L-1 DeepSym-3D-CNN (L-2 normalization is replaced by L-1 normalization) are constructed. Moreover, using ADC images and the combination of DWI and ADC images as inputs, the performance of DeepSym-3D-CNN is also investigated. Performance levels of all three models are evaluated by 5-fold cross-validation and the values of area under ROC curve (AUC) are compared by DeLong’s test. RESULTS: DeepSym-3D-CNN achieves an accuracy of 0.850 and an AUC of 0.864. DeLong’s test of AUC values demonstrates that DeepSym-3D-CNN significantly outperforms other comparative models (p < 0.05). The highlighted regions in the feature maps of DeepSym-3D-CNN spatially match with AIS lesions. Meanwhile, DeepSym-3D-CNN using DWI images presents the significant higher AUC than that either using ADC images or using DWI-ADC images based on DeLong’s test (p < 0.05). CONCLUSIONS: DeepSym-3D-CNN is a potential method for automatically identifying AIS via DWI images and can be extended to other diseases with asymmetric lesions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
翻似烂柯人完成签到,获得积分10
刚刚
刚刚
huahua666666发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
ChemNiko发布了新的文献求助10
2秒前
雪白德地完成签到,获得积分10
2秒前
guan发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
科研通AI6应助研友_842M4n采纳,获得10
3秒前
3秒前
SciGPT应助Zzzzz采纳,获得10
3秒前
luchong发布了新的文献求助50
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助舒心的花卷采纳,获得10
4秒前
peachkim完成签到,获得积分10
4秒前
打工人发布了新的文献求助10
4秒前
4秒前
赵永刚发布了新的文献求助10
4秒前
5秒前
5秒前
Georges-09发布了新的文献求助10
5秒前
悲凉的冰香完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
话梅气泡美式应助承乐采纳,获得10
6秒前
6秒前
6秒前
开放的鸭子完成签到,获得积分10
7秒前
小mol仙完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
斯文败类应助raycy采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603