Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images

规范化(社会学) 卷积神经网络 人工智能 模式识别(心理学) 计算机科学 深度学习 磁共振弥散成像 曲线下面积 有效扩散系数 医学 放射科 磁共振成像 人类学 药代动力学 内科学 社会学
作者
Liyuan Cui,Han Shan-hua,Shouliang Qi,Yang Duan,Yan Kang,Yu Luo
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (4): 551-566 被引量:17
标识
DOI:10.3233/xst-210861
摘要

BACKGROUND: Acute ischemic stroke (AIS) results in high morbidity, disability, and mortality. Early and automatic diagnosis of AIS can help clinicians administer the appropriate interventions. OBJECTIVE: To develop a deep symmetric 3D convolutional neural network (DeepSym-3D-CNN) for automated AIS diagnosis via diffusion-weighted imaging (DWI) images. METHODS: This study includes 190 study subjects (97 AIS and 93 Non-AIS) by collecting both DWI and Apparent Diffusion Coefficient (ADC) images. 3D DWI brain images are split into left and right hemispheres and input into two paths. A map with 125×253×14×12 features is extracted by each path of Inception Modules. After the features computed from two paths are subtracted through L-2 normalization, four multi-scale convolution layers produce the final predation. Three comparative models using DWI images including MedicalNet with transfer learning, Simple DeepSym-3D-CNN (each 3D Inception Module is replaced by a simple 3D-CNN layer), and L-1 DeepSym-3D-CNN (L-2 normalization is replaced by L-1 normalization) are constructed. Moreover, using ADC images and the combination of DWI and ADC images as inputs, the performance of DeepSym-3D-CNN is also investigated. Performance levels of all three models are evaluated by 5-fold cross-validation and the values of area under ROC curve (AUC) are compared by DeLong’s test. RESULTS: DeepSym-3D-CNN achieves an accuracy of 0.850 and an AUC of 0.864. DeLong’s test of AUC values demonstrates that DeepSym-3D-CNN significantly outperforms other comparative models (p < 0.05). The highlighted regions in the feature maps of DeepSym-3D-CNN spatially match with AIS lesions. Meanwhile, DeepSym-3D-CNN using DWI images presents the significant higher AUC than that either using ADC images or using DWI-ADC images based on DeLong’s test (p < 0.05). CONCLUSIONS: DeepSym-3D-CNN is a potential method for automatically identifying AIS via DWI images and can be extended to other diseases with asymmetric lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻白亦完成签到,获得积分20
刚刚
刚刚
raquelle完成签到,获得积分10
1秒前
PENG应助危机的含莲采纳,获得10
1秒前
Bruce完成签到,获得积分10
2秒前
3秒前
科研通AI5应助酷酷的笑白采纳,获得10
3秒前
柯飞扬完成签到,获得积分10
3秒前
lalala应助lh采纳,获得10
4秒前
4秒前
科研通AI5应助9℃采纳,获得10
4秒前
虚拟的凡波完成签到,获得积分10
4秒前
6秒前
桐桐应助Maxpan采纳,获得10
6秒前
6秒前
7秒前
青竹发布了新的文献求助10
7秒前
CMUSK发布了新的文献求助10
8秒前
领导范儿应助月亮是甜的采纳,获得10
9秒前
present完成签到,获得积分10
9秒前
9秒前
luck完成签到 ,获得积分10
10秒前
10秒前
飞龙在天发布了新的文献求助10
10秒前
11秒前
大个应助JZ采纳,获得10
11秒前
12秒前
优美语风完成签到,获得积分20
12秒前
CipherSage应助我要发文章采纳,获得10
13秒前
潇潇微雨发布了新的文献求助10
13秒前
pluto应助Gentleman采纳,获得10
13秒前
SSL完成签到,获得积分10
14秒前
14秒前
龙傲天发布了新的文献求助10
15秒前
优美语风发布了新的文献求助10
15秒前
学生完成签到,获得积分10
15秒前
ProfWang发布了新的文献求助10
16秒前
16秒前
Owen应助科研通管家采纳,获得10
16秒前
shi hui应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514238
求助须知:如何正确求助?哪些是违规求助? 3096520
关于积分的说明 9232276
捐赠科研通 2791605
什么是DOI,文献DOI怎么找? 1531992
邀请新用户注册赠送积分活动 711720
科研通“疑难数据库(出版商)”最低求助积分说明 706999