材料科学
钙钛矿(结构)
碘化物
四方晶系
卤化物
带材弯曲
溴化物
能量转换效率
光电子学
相(物质)
钙钛矿太阳能电池
带隙
化学
无机化学
结晶学
有机化学
作者
Mátyás Dabóczi,Sinclair R. Ratnasingham,Lokeshwari Mohan,Chenfeng Pu,Iain Hamilton,Yi‐Chun Chin,Martyn A. McLachlan,Ji‐Seon Kim
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-10-21
卷期号:6 (11): 3970-3981
被引量:24
标识
DOI:10.1021/acsenergylett.1c02044
摘要
Most highly efficient perovskite solar cells employ mixed iodide–bromide photoactive layers; however, understanding the beneficial effect of the low (5–15 mol %) bromide content is incomplete. Here, a series of MAPb(I1–xBrx)3 perovskite layers are investigated to understand the origin of the high peak power conversion efficiency (19.2%) observed at small bromide content (0.10 ≤ x ≤ 0.125). For the x = 0.125 perovskite, 200 meV shallower energy levels are revealed, accompanied by a reduced density of trap states and stable tetragonal mixed-halide phase with compressed unit cell. In contrast, the higher bromide content samples (x > 0.125) show deeper energy levels, cubic perovskite crystal structure, and signs of halide segregation. Surface photovoltage measurements unveil an undesirable band bending at the hole transport layer/perovskite interface for MAPbI3 and x > 0.125 mixed-halide layers, which is eliminated for the x = 0.125 perovskite because of its shallower Fermi level, enabling enhanced device performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI