Study on potential differentially expressed genes in stroke by bioinformatics analysis

小桶 基因 生物 计算生物学 基因调控网络 小RNA 基因表达谱 基因表达 基因组 生物信息学 遗传学
作者
Xitong Yang,Pengyu Wang,Shanquan Yan,Guangming Wang
出处
期刊:Neurological Sciences [Springer Nature]
卷期号:43 (2): 1155-1166 被引量:5
标识
DOI:10.1007/s10072-021-05470-1
摘要

Stroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine - cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无不破哉完成签到,获得积分20
1秒前
糟糕的铁锤应助肥肥采纳,获得10
3秒前
ranj发布了新的文献求助10
3秒前
isonomia发布了新的文献求助50
7秒前
直率的画笔完成签到,获得积分10
8秒前
生命科学的第一推动力完成签到 ,获得积分10
9秒前
甜橙子完成签到,获得积分10
12秒前
夏睿阳完成签到,获得积分10
14秒前
燧人氏完成签到 ,获得积分10
14秒前
winnie完成签到,获得积分10
14秒前
丰富的世界完成签到 ,获得积分10
15秒前
16秒前
ME3完成签到,获得积分10
18秒前
烟花应助Zee采纳,获得10
18秒前
夏睿阳发布了新的文献求助10
18秒前
20秒前
22秒前
希望天下0贩的0应助其实采纳,获得10
22秒前
华仔应助齐多达采纳,获得10
22秒前
alex发布了新的文献求助10
23秒前
23秒前
qdsj2033完成签到 ,获得积分10
24秒前
矿泉水完成签到 ,获得积分10
25秒前
26秒前
26秒前
26秒前
没有神的过往完成签到,获得积分10
28秒前
Jcm完成签到,获得积分10
29秒前
爱笑的猪猪完成签到 ,获得积分10
30秒前
Hello paper发布了新的文献求助10
31秒前
31秒前
美好斓发布了新的文献求助30
32秒前
研友_8KAz3n完成签到,获得积分10
33秒前
35秒前
36秒前
其实发布了新的文献求助10
36秒前
Nancy完成签到,获得积分10
36秒前
八戒的梦想完成签到,获得积分10
37秒前
Liury完成签到 ,获得积分10
38秒前
NexusExplorer应助研友_8KAz3n采纳,获得10
39秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464263
求助须知:如何正确求助?哪些是违规求助? 3057568
关于积分的说明 9057665
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507473
科研通“疑难数据库(出版商)”最低求助积分说明 696562
邀请新用户注册赠送积分活动 696083