主成分分析
人工智能
模式识别(心理学)
支持向量机
计算机科学
计算机视觉
Gabor变换
分类器(UML)
人工神经网络
特征提取
维数(图论)
降维
极限学习机
核主成分分析
小波
转化(遗传学)
数学
时频分析
小波变换
核方法
离散小波变换
基因
滤波器(信号处理)
生物化学
小波
化学
纯数学
作者
Yiran Feng,Xueheng Tao,Eung Joo Lee
标识
DOI:10.1109/icot51877.2020.9468731
摘要
In this paper, a method of shellfish recognition based on Gabor transform and two-dimensional image principal component analysis (2DPCA) is studied. Gabor transform is used to extract the image features and determine the dimension of the image features; The 2DPCA method is used to reduce the dimension of the transformed features. Compared with BP neural network and support vector machine (SVM) experiments, the results shows that the extreme learning machine classifier is very fast, which has good generalization and high accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI