期刊:Journal of Polymer Engineering [De Gruyter] 日期:2021-07-22卷期号:41 (8): 695-704被引量:3
标识
DOI:10.1515/polyeng-2021-0112
摘要
Abstract In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree ( GD ) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.