Major depressive disorder: a possible typisation according to serotonin, inflammation, and metabolic syndrome

重性抑郁障碍 内科学 萧条(经济学) 情绪障碍 腰围 内分泌学 心理学 代谢综合征 医学 心情 肥胖 精神科 焦虑 宏观经济学 经济
作者
Ante Silić,Jakša Vukojević,Vjekoslav Peitl,Marc D. Binder,Dalibor Karlović
出处
期刊:Acta Neuropsychiatrica [Cambridge University Press]
卷期号:34 (1): 15-23 被引量:5
标识
DOI:10.1017/neu.2021.30
摘要

Major depressive disorder (MDD) is closely related to obesity, inflammation, and insulin resistance, all together being etiologically linked to metabolic syndrome (MetS) development. The depressive disorder has a neuroendocrinological component, co-influencing the MetS, while MetS is characterised by increased cytokine levels, which are known to cause a depressed mood. This study aimed to establish biological subtypes of the depressive disorder based on researched clinical, laboratory, and anthropometric variables.We performed a cross-sectional study on a sample of 293 subjects (145 suffering from a depressive disorder and 148 healthy controls). Results were analysed with multivariate statistical methods as well as with cluster and discriminant analysis. In order to classify depressive disorder on the grounds of laboratory, anthropometric, and clinical parameters, we performed cluster analysis, which resulted in three clusters.The first cluster is characterised by low platelet serotonin, high cortisol levels, high blood glucose levels, high triglycerides levels, high Hamilton Depression Rating Scale score, high waist circumference, high C-Reactive Protein values, and a high number of previous depressive episodes, was named Combined (Metabolic) depression. The inflammatory depression cluster is defined with average platelet serotonin values, normal cortisol, and all other parameter levels, except for increased IL-6 levels. The serotoninergic depression cluster is characterised by markedly low platelet serotonin, and all other parameters are within the normal range.From a biological point of view, depressive disorder is not uniform, and as such, these findings suggest potential clinically useful and generalisable biological subtypes of depressive disorder.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F123456完成签到,获得积分10
刚刚
刚刚
科研菜狗完成签到,获得积分10
1秒前
科研通AI2S应助mitty采纳,获得10
1秒前
dogking完成签到,获得积分10
2秒前
zzn发布了新的文献求助10
2秒前
gzsy发布了新的文献求助10
2秒前
2秒前
沿途南行完成签到,获得积分10
2秒前
3秒前
搜集达人应助咖啡不加糖采纳,获得10
3秒前
3秒前
孜然西瓜发布了新的文献求助10
3秒前
4秒前
hy完成签到,获得积分10
5秒前
5秒前
彭于晏应助科研蝗虫采纳,获得10
7秒前
浊人发布了新的文献求助10
7秒前
8秒前
景代丝发布了新的文献求助10
8秒前
共享精神应助hy采纳,获得10
9秒前
9秒前
9秒前
小居发布了新的文献求助10
10秒前
JamesPei应助ZYT采纳,获得50
10秒前
劲秉应助Promise采纳,获得10
10秒前
han完成签到,获得积分20
11秒前
SciGPT应助优美的谷槐采纳,获得10
11秒前
赘婿应助ben采纳,获得10
11秒前
orixero应助zry采纳,获得10
11秒前
桐桐应助lvben采纳,获得10
12秒前
欣喜豌豆完成签到,获得积分10
12秒前
zzn完成签到,获得积分10
12秒前
12秒前
沿途南行发布了新的文献求助10
12秒前
徐先生完成签到,获得积分10
13秒前
小陈发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259528
求助须知:如何正确求助?哪些是违规求助? 2901148
关于积分的说明 8314112
捐赠科研通 2570492
什么是DOI,文献DOI怎么找? 1396557
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631633