Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration

定向进化 序列空间 序列(生物学) 定向分子进化 蛋白质工程 作文(语言) 系列(地层学) 蛋白质测序 化学空间 功能(生物学) 计算机科学 计算生物学 生物 人工智能 生物信息学 遗传学 肽序列 生物化学 数学 基因 药物发现 语言学 突变体 古生物学 哲学 巴拿赫空间 纯数学
作者
Yutaka Saitô,Misaki Oikawa,T. Sato,Hikaru Nakazawa,Tsuyoshi Ito,Tomoshi Kameda,Koji Tsuda,Mitsuo Umetsu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (23): 14615-14624 被引量:17
标识
DOI:10.1021/acscatal.1c03753
摘要

Machine learning (ML) is becoming an attractive tool in mutagenesis-based protein engineering because of its ability to design a variant library containing proteins with a desired function. However, it remains unclear how ML guides directed evolution in sequence space depending on the composition of training data. Here, we present a ML-guided directed evolution study of an enzyme to investigate the effects of a known “highly positive” variant (i.e., variant known to have high enzyme activity) in training data. We performed two separate series of ML-guided directed evolution of Sortase A with and without a known highly positive variant called 5M in training data. In each series, two rounds of ML were conducted: variants predicted by the initial round were experimentally evaluated and used as additional training data for the second-round of prediction. The improvements in enzyme activity were comparable between the two series, both achieving enzyme activity 2.2–2.5 times higher than 5M. Intriguingly, the sequences of the improved variants were largely different between the two series, indicating that ML guided the directed evolution to the distinct regions of sequence space depending on the presence/absence of the highly positive variant in the training data. This suggests that the sequence diversity of improved variants can be expanded not only by conventional ML using the whole training data but also by ML using a subset of the training data even when it lacks highly positive variants. In summary, this study demonstrates the importance of regulating the composition of training data in ML-guided directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Cassie采纳,获得10
2秒前
2秒前
yuiiuy发布了新的文献求助10
2秒前
竹萧发布了新的文献求助10
3秒前
科研通AI5应助为神指路采纳,获得10
3秒前
chao发布了新的文献求助10
3秒前
华仔应助笨笨的靖巧采纳,获得10
4秒前
斯文败类应助笨笨的靖巧采纳,获得10
4秒前
4秒前
赘婿应助欣慰的乌冬面采纳,获得10
5秒前
5秒前
善学以致用应助Rank采纳,获得30
5秒前
xiao发布了新的文献求助10
6秒前
6秒前
8888拉发布了新的文献求助10
7秒前
科研通AI2S应助123采纳,获得10
7秒前
8秒前
朱大妹发布了新的文献求助10
8秒前
8秒前
buzhinianjiu完成签到 ,获得积分10
9秒前
9秒前
9秒前
chao完成签到,获得积分20
10秒前
传奇3应助zj采纳,获得10
10秒前
MaggieFuuu发布了新的文献求助10
10秒前
12秒前
共享精神应助nature采纳,获得10
12秒前
我是老大应助tangrzh采纳,获得10
12秒前
姜酱江酱完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
coco发布了新的文献求助10
13秒前
13秒前
shinn发布了新的文献求助30
13秒前
深情安青应助陈阳采纳,获得10
14秒前
ake发布了新的文献求助10
14秒前
14秒前
MaggieFuuu完成签到,获得积分10
17秒前
淦淦发布了新的文献求助10
17秒前
18秒前
baishui发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305