亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RSigELU: A nonlinear activation function for deep neural networks

激活函数 乙状窦函数 MNIST数据库 计算机科学 水准点(测量) 人工神经网络 人工智能 双曲函数 深度学习 非线性系统 功能(生物学) 模式识别(心理学) 数学 物理 数学分析 大地测量学 量子力学 地理 进化生物学 生物
作者
Serhat Kılıçarslan,Mete Çelik
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:174: 114805-114805 被引量:37
标识
DOI:10.1016/j.eswa.2021.114805
摘要

In deep learning models, the inputs to the network are processed using activation functions to generate the output corresponding to these inputs. Deep learning models are of particular importance in analyzing big data with numerous parameters and forecasting and are useful for image processing, natural language processing, object recognition, and financial forecasting. Sigmoid and tangent activation functions, which are traditional activation functions, are widely used in deep learning models. However, the sigmoid and tangent activation functions face the vanishing gradient problem. In order to overcome this problem, the ReLU activation function and its derivatives were proposed in the literature. However, there is a negative region problem in these activation functions. In this study, novel RSigELU activation functions, such as single-parameter RSigELU (RSigELUS) and double-parameter (RSigELUD), which are a combination of ReLU, sigmoid, and ELU activation functions, were proposed. The proposed RSigELUS and RSigELUD activation functions can overcome the vanishing gradient and negative region problems and can be effective in the positive, negative, and linear activation regions. Performance evaluation of the proposed RSigELU activation functions was performed on the MNIST, Fashion MNIST, CIFAR-10, and IMDb Movie benchmark datasets. Experimental evaluations showed that the proposed activation functions perform better than other activation functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
舒服的觅夏完成签到,获得积分10
10秒前
11秒前
赘婿应助shinn采纳,获得10
19秒前
阿里完成签到,获得积分10
21秒前
1111关注了科研通微信公众号
23秒前
24秒前
动听的涵山完成签到,获得积分10
26秒前
思源应助郴欧尼采纳,获得10
26秒前
耕云钓月发布了新的文献求助10
28秒前
长安宁完成签到 ,获得积分10
29秒前
30秒前
35秒前
赘婿应助耕云钓月采纳,获得10
37秒前
shinn发布了新的文献求助10
38秒前
Ava应助shinn采纳,获得10
43秒前
44秒前
45秒前
55秒前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
1分钟前
美美发布了新的文献求助10
1分钟前
李爱国应助shinn采纳,获得10
1分钟前
忆修发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247