Learning Short Binary Codes for Large-scale Image Retrieval

二进制代码 计算机科学 图像检索 散列函数 判别式 可扩展性 模式识别(心理学) 二进制数 理论计算机科学 人工智能 数据挖掘 图像(数学) 数学 数据库 计算机安全 算术
作者
Li Liu,Mengyang Yu,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1289-1299 被引量:26
标识
DOI:10.1109/tip.2017.2651390
摘要

Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaolu发布了新的文献求助10
1秒前
hkh发布了新的文献求助10
1秒前
星辰大海应助企鹅采纳,获得10
1秒前
1秒前
2秒前
2秒前
ayn完成签到,获得积分20
3秒前
3秒前
LLM发布了新的文献求助10
3秒前
4秒前
慕青应助肉球球采纳,获得10
4秒前
cheng完成签到,获得积分20
5秒前
5秒前
6秒前
7秒前
cheng发布了新的文献求助10
8秒前
8秒前
8秒前
芭娜55完成签到 ,获得积分10
9秒前
realssr发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
科研通AI5应助LLM采纳,获得10
12秒前
务实紫发布了新的文献求助10
13秒前
13秒前
14秒前
沉静缘分发布了新的文献求助10
14秒前
科研通AI5应助吴祥坤采纳,获得10
16秒前
深情安青应助温柔的中蓝采纳,获得10
16秒前
李健应助kui采纳,获得10
17秒前
韩冬梅发布了新的文献求助10
17秒前
zm发布了新的文献求助20
17秒前
睡教早祈两年半完成签到,获得积分10
17秒前
17秒前
香蕉觅云应助realssr采纳,获得10
19秒前
19秒前
thomas发布了新的文献求助10
19秒前
科研通AI2S应助务实紫采纳,获得10
21秒前
汉堡包应助於剑愁采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765628
求助须知:如何正确求助?哪些是违规求助? 3310177
关于积分的说明 10153699
捐赠科研通 3025484
什么是DOI,文献DOI怎么找? 1660517
邀请新用户注册赠送积分活动 793415
科研通“疑难数据库(出版商)”最低求助积分说明 755616