A tensile ring drives tissue flows to shape the gastrulating amniote embryo

原肠化 形态发生 张力(地质) 羊膜 过程(计算) 胚胎 机械 物理 解剖 生物物理学 材料科学 化学 胚胎发生 生物 压缩(物理) 计算机科学 细胞生物学 复合材料 生物化学 脊椎动物 基因 操作系统
作者
Mehdi Saadaoui,Francis Corson,Didier Rocancourt,Julian Roussel,Jérôme Gros
标识
DOI:10.1101/412767
摘要

Abstract Tissue morphogenesis is driven by local cellular deformations, themselves powered by contractile actomyosin networks. While it is well demonstrated that cell-generated forces at the microscopic scale underlie a variety of local morphogenetic processes (e.g. lengthening/ narrowing 1–4 , bending 5–8 , or folding 9,10 ), how such local forces are transmitted across tissues to shape them at a mesoscopic scale remains largely unknown. Here, by performing a quantitative analysis of gastrulation in entire avian embryos, we show that the formation of the primitive streak and the associated large-scale rotational tissue flows (i.e. ‘polonaise’ movements 11,12 ) are integral parts of a global process that is captured by the laws of fluid mechanics. We identify a large-scale supracellular actomyosin ring (2 mm in diameter and 250 μm thick) that shapes the embryo by exerting a graded tension along the margin between the embryonic and extra-embryonic territories. Tissue-wide flows arise from the transmission of these localized forces across the embryonic disk and are quantitatively recapitulated by a fluid-mechanical model based on the Stokes equations for viscous flow. We further show that cell division, the main driver of cell rearrangements at this stage 13 , is required for fluid-like behavior and for the progress of gastrulation movements. Our results demonstrate the power of a hydrodynamic approach to tissue-wide morphogenetic processes 14–16 and provide a simple, unified mechanical picture of amniote gastrulation. A tensile embryo margin, in addition to directing tissue motion, could act as an interface between mechanical and molecular cues, and play a central role in embryonic self-organization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助小张不嘻嘻采纳,获得10
刚刚
1秒前
cicicixixici发布了新的文献求助10
1秒前
2秒前
2秒前
zjh发布了新的文献求助10
2秒前
xxxxxx完成签到,获得积分20
2秒前
ding应助李苏爱采纳,获得10
3秒前
3秒前
斯文败类应助原梦采纳,获得10
5秒前
思哲范发布了新的文献求助10
5秒前
科研通AI6应助zhu采纳,获得10
5秒前
6秒前
6秒前
6秒前
阮绝悟发布了新的文献求助10
6秒前
热心幻天发布了新的文献求助10
7秒前
7秒前
8秒前
lcdamoy完成签到,获得积分10
8秒前
8秒前
LIU发布了新的文献求助10
9秒前
9秒前
柴六斤完成签到,获得积分10
10秒前
10秒前
️语完成签到 ,获得积分10
10秒前
zjh完成签到,获得积分10
10秒前
JamesPei应助开放的明杰采纳,获得10
11秒前
11秒前
郡邑完成签到,获得积分10
11秒前
yiyi完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
可靠幼旋完成签到,获得积分10
12秒前
12秒前
13秒前
田攀发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959