视网膜
德鲁森
人工智能
Sørensen–骰子系数
计算机科学
交叉口(航空)
视网膜色素上皮
光学相干层析成像
相似性(几何)
计算机视觉
分割
模式识别(心理学)
深度学习
眼科
图像分割
医学
图像(数学)
工程类
航空航天工程
作者
Liling Guan,Kai Yu,Xinjian Chen
摘要
Automated and quantitative analysis of the retinal lesions region is very needed in clinical practice. In this paper, we have proposed a method which effectively combines deep learning and improved distance regularized level set evolution (DRLSE) for automatically detecting and segmenting multiple retinal lesions in OCT volumes. The proposed method can segment five different retinal lesions: pigment epithelium detachment (PED), sub-retinal fluid (SRF), drusen, choroidal neovascularization (CNV), macular holes (MH). We tested 500 B-scans from 15 3D OCT volumes. The experimental results have validated the effectiveness and efficiency of the proposed method. The quantitative indices of average precision (AP), area under the curve (AUC) at intersection-over-union (IoU) that is equal to 0.50 : 0.05 : 0.95 and dice similarity coefficient (DICE) in average of 93.2%, 90.6% and 90.3% can be achieved, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI