亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research progress of organoids-on-chips in biomedical application

类有机物 纳米技术 计算生物学 工程伦理学 生物 工程类 神经科学 材料科学
作者
Qian Wu,Yuxiang Pan,Hao Wan,Ning Hu,Ping Wang
出处
期刊:Kexue tongbao [Science China Press]
卷期号:64 (9): 902-910 被引量:9
标识
DOI:10.1360/n972018-00860
摘要

Drug screening is traditionally based on the pharmacodynamic models from 2D cell culture or animal experiments. However, these models suffer from poor drug efficacy prediction due to their difference from human in vivo cell microenvironments. In recent years, advances in biotechnology and tissue engineering have enabled rapid growth of in vitro organoid culturing. These organoids cultured in matrigel can mimic human in vivo cell microenvironment and physiology more accurately than traditional 2D cell culture and animal models. Among them, tumor organoids, especially patient-derived tumour organoids, can be applied as effective cancer models for drug screening and personalized medicine. By integrating organoid culturing and microfluidics, organoid-on-a-chip platform has been developed to simulate the structure and function of human tissues or organs. In 2010, Ingber et al. reported a biomimetic microfluidic platform called lung-on-a-chip. Microscale engineering technologies were firstly utilized to create biomimetic microchips. Henceforth, increasing kinds of organ-on-a-chips were reported all over the world to mimic different organs, such as liver, kidney and brain. 2D planar cells were cultured in PDMS chambers in majority organ-on-a-chips. More and more studies focused on 3D cells or organoids instead recently due to their better biomimetic capability for drug screening and disease models. In 2018, Qin et al. reported a liver organoid from human iPSCs in a 3D perfusable chip system, which is the first study that uses human organoid in a microfluidic chip and executed drug testing successfully. The established liver organoid-on-a-chip system may provide a promising platform for engineering stem cell-based organoids with applications in regenerative medicine, disease modeling and drug testing. Conventionally, drug efficacy evaluation in organoid-on-a-chip was performed by cell staining. However, this approach only presents static results of live/dead cells, but cannot monitor the cells dynamically for long-term recording. Sensor integration with organoid-on-a-chips paves a new way for dynamic recording. Currently, Wang et al. developed a 3D electric cell/matrigel-substrate impedance sensing (3D-ECMIS) platform for real-time and non-invasive monitoring of 3D cell viability and drug susceptibility. This platform integrated impedance sensors to monitor the impedance changes during 3D cell culturing. Additionally, Wang et al. reported the 3D cardiomyocytes detection by combining microelectrode arrays (MEAs). Heart cells of neonatal rat were cultured on a tissue engineering scaffold, which was fabricated by 3D printing and electro-spinning. The experimental results demonstrated that extracellular field potential (spike amplitude and firing rate) of 3D cardiomyocytes can be recorded in real time. Moreover, non-invasive measurement of cellular metabolism is important to study the metabolism mechanism and drug efficacy. Thus, light-addressable potentiometric sensor (LAPS) was integrated with organoid-on-a-chip for chemical imaging of ions (H+, Na+, K+, Ca2+) induced by cellular metabolism, which enables accurate detection of different chemical parameters in organoid-on-a-chip. Multiple organoid chip linked by microfluidics, called human-on-a-chip is a newly emerging and frontier technology to mimic the interaction of multiple human organs in recent years. It can recapitulate the physiologically relevant structures and functions of the organs, as well as the interaction between multiple organs as in vivo , thereby offering alternative models for predicting human responses to various drugs and environmental stimulus. Organoid-on-a-chip demonstrates outstanding potential in drug screening, disease modeling and personalized precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zommen完成签到 ,获得积分10
刚刚
run发布了新的文献求助10
刚刚
研友_VZG7GZ应助淡定白枫采纳,获得10
3秒前
12秒前
淡定白枫完成签到,获得积分10
12秒前
孙孙应助瘦瘦的寒珊采纳,获得10
22秒前
Panther完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
36秒前
孙孙应助瘦瘦的寒珊采纳,获得10
39秒前
Ellen应助背后梦安采纳,获得30
41秒前
002完成签到,获得积分10
50秒前
53秒前
孙孙应助瘦瘦的寒珊采纳,获得10
57秒前
Asher发布了新的文献求助10
58秒前
背后梦安完成签到,获得积分10
1分钟前
霖霖完成签到,获得积分10
1分钟前
morena发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得30
1分钟前
wanci应助Asher采纳,获得10
1分钟前
1分钟前
苏小北完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
整齐的萝完成签到,获得积分20
1分钟前
南滨完成签到 ,获得积分10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
Ava应助2311采纳,获得30
2分钟前
情怀应助lf采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
lf发布了新的文献求助10
2分钟前
佳丽发布了新的文献求助10
2分钟前
佳丽完成签到,获得积分10
2分钟前
2分钟前
Ellen完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976643
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204613
捐赠科研通 3257484
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613