Research progress of organoids-on-chips in biomedical application

类有机物 纳米技术 计算生物学 工程伦理学 生物 工程类 神经科学 材料科学
作者
Qian Wu,Yuxiang Pan,Hao Wan,Ning Hu,Ping Wang
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:64 (9): 902-910 被引量:9
标识
DOI:10.1360/n972018-00860
摘要

Drug screening is traditionally based on the pharmacodynamic models from 2D cell culture or animal experiments. However, these models suffer from poor drug efficacy prediction due to their difference from human in vivo cell microenvironments. In recent years, advances in biotechnology and tissue engineering have enabled rapid growth of in vitro organoid culturing. These organoids cultured in matrigel can mimic human in vivo cell microenvironment and physiology more accurately than traditional 2D cell culture and animal models. Among them, tumor organoids, especially patient-derived tumour organoids, can be applied as effective cancer models for drug screening and personalized medicine. By integrating organoid culturing and microfluidics, organoid-on-a-chip platform has been developed to simulate the structure and function of human tissues or organs. In 2010, Ingber et al. reported a biomimetic microfluidic platform called lung-on-a-chip. Microscale engineering technologies were firstly utilized to create biomimetic microchips. Henceforth, increasing kinds of organ-on-a-chips were reported all over the world to mimic different organs, such as liver, kidney and brain. 2D planar cells were cultured in PDMS chambers in majority organ-on-a-chips. More and more studies focused on 3D cells or organoids instead recently due to their better biomimetic capability for drug screening and disease models. In 2018, Qin et al. reported a liver organoid from human iPSCs in a 3D perfusable chip system, which is the first study that uses human organoid in a microfluidic chip and executed drug testing successfully. The established liver organoid-on-a-chip system may provide a promising platform for engineering stem cell-based organoids with applications in regenerative medicine, disease modeling and drug testing. Conventionally, drug efficacy evaluation in organoid-on-a-chip was performed by cell staining. However, this approach only presents static results of live/dead cells, but cannot monitor the cells dynamically for long-term recording. Sensor integration with organoid-on-a-chips paves a new way for dynamic recording. Currently, Wang et al. developed a 3D electric cell/matrigel-substrate impedance sensing (3D-ECMIS) platform for real-time and non-invasive monitoring of 3D cell viability and drug susceptibility. This platform integrated impedance sensors to monitor the impedance changes during 3D cell culturing. Additionally, Wang et al. reported the 3D cardiomyocytes detection by combining microelectrode arrays (MEAs). Heart cells of neonatal rat were cultured on a tissue engineering scaffold, which was fabricated by 3D printing and electro-spinning. The experimental results demonstrated that extracellular field potential (spike amplitude and firing rate) of 3D cardiomyocytes can be recorded in real time. Moreover, non-invasive measurement of cellular metabolism is important to study the metabolism mechanism and drug efficacy. Thus, light-addressable potentiometric sensor (LAPS) was integrated with organoid-on-a-chip for chemical imaging of ions (H+, Na+, K+, Ca2+) induced by cellular metabolism, which enables accurate detection of different chemical parameters in organoid-on-a-chip. Multiple organoid chip linked by microfluidics, called human-on-a-chip is a newly emerging and frontier technology to mimic the interaction of multiple human organs in recent years. It can recapitulate the physiologically relevant structures and functions of the organs, as well as the interaction between multiple organs as in vivo , thereby offering alternative models for predicting human responses to various drugs and environmental stimulus. Organoid-on-a-chip demonstrates outstanding potential in drug screening, disease modeling and personalized precision medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助云_123采纳,获得10
刚刚
ephore应助LLL采纳,获得30
3秒前
GRH完成签到,获得积分10
3秒前
gaobowang发布了新的文献求助10
3秒前
7秒前
共享精神应助肚子圆圆的采纳,获得10
8秒前
cuprum完成签到,获得积分10
9秒前
思源应助YI点半的飞机场采纳,获得10
10秒前
11秒前
Leonardi给热情的听露的求助进行了留言
11秒前
zkf完成签到,获得积分10
12秒前
awu发布了新的文献求助10
12秒前
13秒前
13秒前
麻团儿完成签到,获得积分10
13秒前
cuber完成签到 ,获得积分10
13秒前
耍酷依玉完成签到,获得积分10
15秒前
云_123发布了新的文献求助10
15秒前
小李完成签到,获得积分10
15秒前
耍酷依玉发布了新的文献求助10
18秒前
小二郎应助Ji采纳,获得10
18秒前
龙行天下发布了新的文献求助10
20秒前
细心行云完成签到,获得积分10
22秒前
22秒前
奋斗冬萱完成签到,获得积分10
23秒前
awu完成签到,获得积分10
23秒前
NexusExplorer应助耍酷依玉采纳,获得10
24秒前
Gg发布了新的文献求助200
24秒前
25秒前
26秒前
26秒前
27秒前
30秒前
30秒前
sdsd完成签到,获得积分10
30秒前
31秒前
长孙兰溪发布了新的文献求助10
32秒前
李爱国应助JinZ采纳,获得10
34秒前
WR任发布了新的文献求助10
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825