已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A real-time human-robot interaction framework with robust background invariant hand gesture detection

计算机科学 手势 人工智能 卷积神经网络 手势识别 计算机视觉 机器人 人机交互 深度学习 标杆管理 业务 营销
作者
Osama Mazhar,Benjamin Navarro,Sofiane Ramdani,Robin Passama,Andrea Cherubini
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:60: 34-48 被引量:92
标识
DOI:10.1016/j.rcim.2019.05.008
摘要

In the light of factories of the future, to ensure productive and safe interaction between robot and human coworkers, it is imperative that the robot extracts the essential information of the coworker. We address this by designing a reliable framework for real-time safe human-robot collaboration, using static hand gestures and 3D skeleton extraction. OpenPose library is integrated with Microsoft Kinect V2, to obtain a 3D estimation of the human skeleton. With the help of 10 volunteers, we recorded an image dataset of alpha-numeric static hand gestures, taken from the American Sign Language. We named our dataset OpenSign and released it to the community for benchmarking. Inception V3 convolutional neural network is adapted and trained to detect the hand gestures. To augment the data for training the hand gesture detector, we use OpenPose to localize the hands in the dataset images and segment the backgrounds of hand images, by exploiting the Kinect V2 depth map. Then, the backgrounds are substituted with random patterns and indoor architecture templates. Fine-tuning of Inception V3 is performed in three phases, to achieve validation accuracy of 99.1% and test accuracy of 98.9%. An asynchronous integration of image acquisition and hand gesture detection is performed to ensure real-time detection of hand gestures. Finally, the proposed framework is integrated in our physical human-robot interaction library OpenPHRI. This integration complements OpenPHRI by providing successful implementation of the ISO/TS 15066 safety standards for “safety rated monitored stop” and “speed and separation monitoring” collaborative modes. We validate the performance of the proposed framework through a complete teaching by demonstration experiment with a robotic manipulator.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高一刀发布了新的文献求助10
2秒前
5秒前
秋鱼完成签到,获得积分10
7秒前
7秒前
8秒前
wangzhihui发布了新的文献求助10
9秒前
10秒前
10秒前
谨慎萤发布了新的文献求助10
10秒前
gexiaoyang发布了新的文献求助10
14秒前
柚子肉发布了新的文献求助10
15秒前
15秒前
Jay发布了新的文献求助10
15秒前
香蕉觅云应助谨慎萤采纳,获得10
16秒前
wangzhihui完成签到,获得积分20
22秒前
云风发布了新的文献求助10
22秒前
orixero应助小白采纳,获得10
24秒前
FYhan完成签到 ,获得积分10
25秒前
科研顺利完成签到,获得积分10
26秒前
赘婿应助包容溪灵采纳,获得10
28秒前
传奇3应助李...采纳,获得10
28秒前
bkagyin应助云风采纳,获得10
29秒前
30秒前
可爱的函函应助ausue采纳,获得10
31秒前
37秒前
39秒前
40秒前
40秒前
海贼学术完成签到 ,获得积分10
40秒前
43秒前
43秒前
科研通AI5应助帅气寒香采纳,获得100
44秒前
SciGPT应助Haydeehu采纳,获得10
44秒前
红黄蓝完成签到 ,获得积分10
44秒前
王博士发布了新的文献求助10
45秒前
李...发布了新的文献求助10
46秒前
摘星数羊发布了新的文献求助10
46秒前
ausue发布了新的文献求助10
48秒前
Singularity发布了新的文献求助10
49秒前
tang完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 330
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753544
求助须知:如何正确求助?哪些是违规求助? 3297104
关于积分的说明 10097476
捐赠科研通 3011817
什么是DOI,文献DOI怎么找? 1654266
邀请新用户注册赠送积分活动 788720
科研通“疑难数据库(出版商)”最低求助积分说明 752966