Graph-Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns

计算机科学 源代码 图形 编码(集合论) 语义变化 开源 数据挖掘 情报检索 人工智能 自然语言处理 软件 理论计算机科学 程序设计语言 集合(抽象数据类型)
作者
Hoan Anh Nguyen,Tien N. Nguyen,Danny Dig,Son Nguyen,Hieu Tran,Michael Hilton
标识
DOI:10.1109/icse.2019.00089
摘要

Prior research exploited the repetitiveness of code changes to enable several tasks such as code completion, bug-fix recommendation, library adaption, etc. These and other novel applications require accurate detection of semantic changes, but the state-of-the-art methods are limited to algorithms that detect specific kinds of changes at the syntactic level. Existing algorithms relying on syntactic similarity have lower accuracy, and cannot effectively detect semantic change patterns. We introduce a novel graph-based mining approach, CPatMiner, to detect previously unknown repetitive changes in the wild, by mining fine-grained semantic code change patterns from a large number of repositories. To overcome unique challenges such as detecting meaningful change patterns and scaling to large repositories, we rely on fine-grained change graphs to capture program dependencies. We evaluate CPatMiner by mining change patterns in a diverse corpus of 5,000+ open-source projects from GitHub across a population of 170,000+ developers. We use three complementary methods. First, we sent the mined patterns to 108 open-source developers. We found that 70% of respondents recognized those patterns as their meaningful frequent changes. Moreover, 79% of respondents even named the patterns, and 44% wanted future IDEs to automate such repetitive changes. We found that the mined change patterns belong to various development activities: adaptive (9%), perfective (20%), corrective (35%) and preventive (36%, including refactorings). Second, we compared our tool with the state-of-the-art, AST-based technique, and reported that it detects 2.1x more meaningful patterns. Third, we use CPatMiner to search for patterns in a corpus of 88 GitHub projects with longer histories consisting of 164M SLOCs. It constructed 322K fine-grained change graphs containing 3M nodes, and detected 17K instances of change patterns from which we provide unique insights on the practice of change patterns among individuals and teams. We found that a large percentage (75%) of the change patterns from individual developers are commonly shared with others, and this holds true for teams. Moreover, we found that the patterns are not intermittent but spread widely over time. Thus, we call for a community-based change pattern database to provide important resources in novel applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
翟肇永发布了新的文献求助10
1秒前
852应助诚心若男采纳,获得10
1秒前
1秒前
清秀语堂完成签到,获得积分10
1秒前
Lucas应助Chensir采纳,获得10
1秒前
夏老板喜欢夏天完成签到,获得积分10
1秒前
Louise完成签到,获得积分10
2秒前
AARON完成签到,获得积分10
2秒前
科研搬运工完成签到,获得积分10
2秒前
漪涙发布了新的文献求助10
2秒前
2秒前
Frank完成签到,获得积分10
3秒前
王博雅发布了新的文献求助10
3秒前
Jasper应助111采纳,获得10
3秒前
4秒前
阿吉发布了新的文献求助10
4秒前
4秒前
深情安青应助壳壳采纳,获得30
4秒前
猎户小姐发布了新的文献求助10
5秒前
大个应助lixx采纳,获得10
5秒前
Joyce发布了新的文献求助10
5秒前
眼睛大的雨雪完成签到,获得积分20
6秒前
6秒前
HJJHJH发布了新的文献求助100
6秒前
打打应助wumolijun采纳,获得30
7秒前
jiahuo1完成签到,获得积分10
7秒前
7秒前
De_Am0ur完成签到,获得积分10
8秒前
9秒前
mc1220发布了新的文献求助10
9秒前
翟肇永完成签到,获得积分10
9秒前
王博雅完成签到,获得积分10
9秒前
卢静静发布了新的文献求助30
10秒前
ao20000106应助shengdong采纳,获得20
10秒前
托塔李天后完成签到,获得积分10
11秒前
12秒前
12秒前
Orange应助咚咚咚咚采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585514
求助须知:如何正确求助?哪些是违规求助? 4002204
关于积分的说明 12389666
捐赠科研通 3678349
什么是DOI,文献DOI怎么找? 2027265
邀请新用户注册赠送积分活动 1060773
科研通“疑难数据库(出版商)”最低求助积分说明 947278