Graph-Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns

计算机科学 源代码 图形 编码(集合论) 语义变化 开源 数据挖掘 情报检索 人工智能 自然语言处理 软件 理论计算机科学 程序设计语言 集合(抽象数据类型)
作者
Hoan Anh Nguyen,Tien N. Nguyen,Danny Dig,Son Nguyen,Hieu Tran,Michael Hilton
标识
DOI:10.1109/icse.2019.00089
摘要

Prior research exploited the repetitiveness of code changes to enable several tasks such as code completion, bug-fix recommendation, library adaption, etc. These and other novel applications require accurate detection of semantic changes, but the state-of-the-art methods are limited to algorithms that detect specific kinds of changes at the syntactic level. Existing algorithms relying on syntactic similarity have lower accuracy, and cannot effectively detect semantic change patterns. We introduce a novel graph-based mining approach, CPatMiner, to detect previously unknown repetitive changes in the wild, by mining fine-grained semantic code change patterns from a large number of repositories. To overcome unique challenges such as detecting meaningful change patterns and scaling to large repositories, we rely on fine-grained change graphs to capture program dependencies. We evaluate CPatMiner by mining change patterns in a diverse corpus of 5,000+ open-source projects from GitHub across a population of 170,000+ developers. We use three complementary methods. First, we sent the mined patterns to 108 open-source developers. We found that 70% of respondents recognized those patterns as their meaningful frequent changes. Moreover, 79% of respondents even named the patterns, and 44% wanted future IDEs to automate such repetitive changes. We found that the mined change patterns belong to various development activities: adaptive (9%), perfective (20%), corrective (35%) and preventive (36%, including refactorings). Second, we compared our tool with the state-of-the-art, AST-based technique, and reported that it detects 2.1x more meaningful patterns. Third, we use CPatMiner to search for patterns in a corpus of 88 GitHub projects with longer histories consisting of 164M SLOCs. It constructed 322K fine-grained change graphs containing 3M nodes, and detected 17K instances of change patterns from which we provide unique insights on the practice of change patterns among individuals and teams. We found that a large percentage (75%) of the change patterns from individual developers are commonly shared with others, and this holds true for teams. Moreover, we found that the patterns are not intermittent but spread widely over time. Thus, we call for a community-based change pattern database to provide important resources in novel applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助伯赏觅翠采纳,获得10
2秒前
3秒前
贪玩的野狍子关注了科研通微信公众号
3秒前
4秒前
4秒前
暖小阳完成签到,获得积分10
5秒前
周星星发布了新的文献求助10
5秒前
5秒前
积极灵薇发布了新的文献求助20
5秒前
77发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
却之不恭6253完成签到,获得积分10
11秒前
周海江发布了新的文献求助10
12秒前
冰水混合物完成签到,获得积分10
12秒前
路小黑完成签到 ,获得积分10
13秒前
14秒前
14秒前
Nozomi发布了新的文献求助10
14秒前
hang完成签到,获得积分10
14秒前
带善人发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
华仔应助song_song采纳,获得10
18秒前
齐天大圣应助五六七采纳,获得150
19秒前
老实起哞发布了新的文献求助10
19秒前
文档发布了新的文献求助10
20秒前
孙传彬发布了新的文献求助10
21秒前
无限飞丹发布了新的文献求助10
21秒前
犹豫的青烟完成签到 ,获得积分10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174