Graph-Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns

计算机科学 源代码 图形 编码(集合论) 语义变化 开源 数据挖掘 情报检索 人工智能 自然语言处理 软件 理论计算机科学 程序设计语言 集合(抽象数据类型)
作者
Hoan Anh Nguyen,Tien N. Nguyen,Danny Dig,Son Nguyen,Hieu Tran,Michael Hilton
标识
DOI:10.1109/icse.2019.00089
摘要

Prior research exploited the repetitiveness of code changes to enable several tasks such as code completion, bug-fix recommendation, library adaption, etc. These and other novel applications require accurate detection of semantic changes, but the state-of-the-art methods are limited to algorithms that detect specific kinds of changes at the syntactic level. Existing algorithms relying on syntactic similarity have lower accuracy, and cannot effectively detect semantic change patterns. We introduce a novel graph-based mining approach, CPatMiner, to detect previously unknown repetitive changes in the wild, by mining fine-grained semantic code change patterns from a large number of repositories. To overcome unique challenges such as detecting meaningful change patterns and scaling to large repositories, we rely on fine-grained change graphs to capture program dependencies. We evaluate CPatMiner by mining change patterns in a diverse corpus of 5,000+ open-source projects from GitHub across a population of 170,000+ developers. We use three complementary methods. First, we sent the mined patterns to 108 open-source developers. We found that 70% of respondents recognized those patterns as their meaningful frequent changes. Moreover, 79% of respondents even named the patterns, and 44% wanted future IDEs to automate such repetitive changes. We found that the mined change patterns belong to various development activities: adaptive (9%), perfective (20%), corrective (35%) and preventive (36%, including refactorings). Second, we compared our tool with the state-of-the-art, AST-based technique, and reported that it detects 2.1x more meaningful patterns. Third, we use CPatMiner to search for patterns in a corpus of 88 GitHub projects with longer histories consisting of 164M SLOCs. It constructed 322K fine-grained change graphs containing 3M nodes, and detected 17K instances of change patterns from which we provide unique insights on the practice of change patterns among individuals and teams. We found that a large percentage (75%) of the change patterns from individual developers are commonly shared with others, and this holds true for teams. Moreover, we found that the patterns are not intermittent but spread widely over time. Thus, we call for a community-based change pattern database to provide important resources in novel applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐佳乐完成签到 ,获得积分10
刚刚
852应助毕蓝血采纳,获得10
刚刚
1秒前
2秒前
科目三应助杨e采纳,获得10
3秒前
4秒前
谨慎笑蓝发布了新的文献求助10
5秒前
5秒前
6秒前
包容新蕾发布了新的文献求助20
7秒前
科目三应助呼呼呼采纳,获得10
7秒前
零度酷冷发布了新的文献求助30
8秒前
JamesPei应助奶茶采纳,获得10
10秒前
11秒前
11秒前
李伊发布了新的文献求助10
11秒前
nicole完成签到,获得积分10
11秒前
11秒前
12秒前
关关完成签到,获得积分10
13秒前
14秒前
GOODYUE发布了新的文献求助10
14秒前
gfgcf完成签到,获得积分20
14秒前
乐多发布了新的文献求助150
15秒前
15秒前
DollyZhang完成签到,获得积分10
16秒前
16秒前
炸鸡加热发布了新的文献求助10
16秒前
卡尔拉完成签到,获得积分10
16秒前
则无不臻完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
炙热傲之发布了新的文献求助10
18秒前
18秒前
Owen应助无限安蕾采纳,获得10
19秒前
可爱的函函应助啦啦采纳,获得100
20秒前
秋秋完成签到,获得积分10
20秒前
Owen应助11采纳,获得10
20秒前
蓝色的多崎作完成签到,获得积分10
21秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222817
求助须知:如何正确求助?哪些是违规求助? 2871641
关于积分的说明 8176254
捐赠科研通 2538573
什么是DOI,文献DOI怎么找? 1370638
科研通“疑难数据库(出版商)”最低求助积分说明 645828
邀请新用户注册赠送积分活动 619710