Graph-Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns

计算机科学 源代码 图形 编码(集合论) 语义变化 开源 数据挖掘 情报检索 人工智能 自然语言处理 软件 理论计算机科学 程序设计语言 集合(抽象数据类型)
作者
Hoan Anh Nguyen,Tien N. Nguyen,Danny Dig,Son Nguyen,Hieu Tran,Michael Hilton
标识
DOI:10.1109/icse.2019.00089
摘要

Prior research exploited the repetitiveness of code changes to enable several tasks such as code completion, bug-fix recommendation, library adaption, etc. These and other novel applications require accurate detection of semantic changes, but the state-of-the-art methods are limited to algorithms that detect specific kinds of changes at the syntactic level. Existing algorithms relying on syntactic similarity have lower accuracy, and cannot effectively detect semantic change patterns. We introduce a novel graph-based mining approach, CPatMiner, to detect previously unknown repetitive changes in the wild, by mining fine-grained semantic code change patterns from a large number of repositories. To overcome unique challenges such as detecting meaningful change patterns and scaling to large repositories, we rely on fine-grained change graphs to capture program dependencies. We evaluate CPatMiner by mining change patterns in a diverse corpus of 5,000+ open-source projects from GitHub across a population of 170,000+ developers. We use three complementary methods. First, we sent the mined patterns to 108 open-source developers. We found that 70% of respondents recognized those patterns as their meaningful frequent changes. Moreover, 79% of respondents even named the patterns, and 44% wanted future IDEs to automate such repetitive changes. We found that the mined change patterns belong to various development activities: adaptive (9%), perfective (20%), corrective (35%) and preventive (36%, including refactorings). Second, we compared our tool with the state-of-the-art, AST-based technique, and reported that it detects 2.1x more meaningful patterns. Third, we use CPatMiner to search for patterns in a corpus of 88 GitHub projects with longer histories consisting of 164M SLOCs. It constructed 322K fine-grained change graphs containing 3M nodes, and detected 17K instances of change patterns from which we provide unique insights on the practice of change patterns among individuals and teams. We found that a large percentage (75%) of the change patterns from individual developers are commonly shared with others, and this holds true for teams. Moreover, we found that the patterns are not intermittent but spread widely over time. Thus, we call for a community-based change pattern database to provide important resources in novel applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助韭菜采纳,获得10
1秒前
开开心心的开心应助wahaha采纳,获得10
1秒前
善学以致用应助YE采纳,获得10
1秒前
1秒前
1秒前
木子发布了新的文献求助10
1秒前
义气绿柳发布了新的文献求助10
2秒前
xioatudou完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
a1oft发布了新的文献求助10
2秒前
科研通AI5应助调皮纸飞机采纳,获得20
2秒前
mirror发布了新的文献求助30
3秒前
椰子发布了新的文献求助10
3秒前
情怀应助iu采纳,获得10
3秒前
但是完成签到,获得积分10
3秒前
4秒前
脱贫致富的小殷完成签到,获得积分10
4秒前
花花花花完成签到 ,获得积分10
4秒前
wwwww发布了新的文献求助10
4秒前
诗谙完成签到,获得积分10
4秒前
不赖床的科研狗完成签到,获得积分10
4秒前
4秒前
buno应助幸福胡萝卜采纳,获得10
4秒前
张肥肥关注了科研通微信公众号
6秒前
火山蜗牛完成签到,获得积分10
6秒前
6秒前
魏笑白完成签到 ,获得积分10
7秒前
Orange应助168521kf采纳,获得10
7秒前
不安慕蕊完成签到,获得积分10
7秒前
7777777发布了新的文献求助10
7秒前
7秒前
wangn完成签到,获得积分10
7秒前
8秒前
周老八发布了新的文献求助10
8秒前
8秒前
韭菜完成签到,获得积分10
9秒前
季宇发布了新的文献求助10
9秒前
英俊的铭应助屁王采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740