Noncovalent Muscle-Inspired Hydrogel with Rapid Recovery and Antifatigue Property under Cyclic Stress

材料科学 自愈水凝胶 韧性 断裂韧性 组织工程 模数 延伸率 人工肌肉 生物医学工程 复合材料 极限抗拉强度 高分子化学 计算机科学 执行机构 医学 人工智能
作者
Zengqiang Wang,Shaoyu Lü,Yanhui Liu,Tao Li,Yan Jia,Xiao Bai,Boli Ni,Jing Yang,Mingzhu Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (34): 31393-31401 被引量:22
标识
DOI:10.1021/acsami.9b10753
摘要

Designing muscle-inspired hydrogels that possess structure and bioactivity similar to muscles is an eternal pursuit in material sciences and tissue engineering. However, the development of a muscle-inspired hydrogel via the formation of noncovalent interactions remains challenging, and its application in sustained loading situations such as cyclic stresses is limited. Herein, H-bonds and microcrystalline domains were introduced, and a noncovalent muscle-inspired hydrogel was developed to mimic both the physical structure and functionality of muscles at the macroscopic level. The hydrogel exhibited excellent mechanical properties (a fracture strength of 2.16 ± 0.08 MPa, fracture strain of 830 ± 23%, elastic modulus of 275 ± 9 KPa, and toughness of 7.04 ± 0.80 MJ/m3), a large energy dissipation (2.00 ± 0.27 MJ/m3 at 600% elongation), and a rapid self-recovery (92 ± 1% toughness recovery within 20 min). Antifatigue behavior of the muscle-inspired hydrogel was observed upon successive tensile and compressive cyclic loadings. Under 100 cycles of loadings, the robustness of the hydrogel has been maintained and even improved, which are achieved due to strain-induced orientation. Furthermore, the hydrogel was found to be self-healed. This hydrogel promises to be among the most relevant drivers for the development of new-generation muscle-inspired hydrogels in the next decade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
idea完成签到 ,获得积分10
刚刚
win完成签到 ,获得积分10
1秒前
1秒前
yznfly举报zq求助涉嫌违规
1秒前
务实日记本完成签到,获得积分10
1秒前
kwb发布了新的文献求助10
1秒前
xhz发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
自信的发布了新的文献求助10
3秒前
葫芦娃发布了新的文献求助10
3秒前
学啊学123完成签到 ,获得积分10
4秒前
Enyu完成签到 ,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Akim应助Zyc采纳,获得10
5秒前
Three_one完成签到,获得积分10
5秒前
6秒前
复杂惜霜发布了新的文献求助10
6秒前
JMrider完成签到,获得积分10
7秒前
8秒前
求求完成签到 ,获得积分10
8秒前
Hello应助无辜的亦云采纳,获得10
9秒前
9秒前
橘生饼完成签到,获得积分10
9秒前
9秒前
Kristine完成签到,获得积分10
10秒前
所所应助紧张的惜梦采纳,获得10
10秒前
我是老大应助白衣修身采纳,获得10
10秒前
10秒前
guoguo发布了新的文献求助10
11秒前
guoguo发布了新的文献求助10
11秒前
12秒前
彭于晏应助加油采纳,获得10
12秒前
深情安青应助Three_one采纳,获得10
13秒前
13秒前
kwb完成签到,获得积分10
14秒前
koipp发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641767
求助须知:如何正确求助?哪些是违规求助? 4757126
关于积分的说明 15014351
捐赠科研通 4800144
什么是DOI,文献DOI怎么找? 2565843
邀请新用户注册赠送积分活动 1524049
关于科研通互助平台的介绍 1483688