Prediction of surface roughness in extrusion-based additive manufacturing with machine learning

表面粗糙度 熔丝制造 预测建模 热电偶 机器学习 计算机科学 表面光洁度 汽车工业 减色 机械工程 人工智能 3D打印 材料科学 工程类 复合材料 艺术 视觉艺术 航空航天工程
作者
Zhixiong Li,Ziyang Zhang,Junchuan Shi,Dazhong Wu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:57: 488-495 被引量:361
标识
DOI:10.1016/j.rcim.2019.01.004
摘要

Additive manufacturing (AM), also known as 3D printing, has been increasingly adopted in the aerospace, automotive, energy, and healthcare industries over the past few years. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is surface integrity. To improve the surface integrity of additively manufactured parts, a data-driven predictive modeling approach to predicting surface roughness in AM is introduced. Multiple sensors of different types, including thermocouples, infrared temperature sensors, and accelerometers, are used to collect temperature and vibration data. An ensemble learning algorithm is introduced to train the predictive model of surface roughness. Features in the time and frequency domains are extracted from sensor-based condition monitoring data. A subset of these features is selected to improve computational efficiency and prediction accuracy. The predictive model is validated using the condition monitoring data collected from a set of AM tests conducted on a fused filament fabrication (FFF) machine. Experimental results have shown that the proposed predictive modeling approach is capable of predicting the surface roughness of 3D printed components with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智大有完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
上官若男应助小颜采纳,获得10
1秒前
cuarzn发布了新的文献求助10
1秒前
友好的晓亦完成签到,获得积分10
2秒前
ZD完成签到,获得积分10
2秒前
沟通亿心发布了新的文献求助10
2秒前
wyx发布了新的文献求助10
2秒前
科目三应助Honey采纳,获得10
3秒前
喜之郎发布了新的文献求助10
3秒前
赘婿应助快乐达不刘采纳,获得10
3秒前
精灵梦完成签到,获得积分10
3秒前
PL发布了新的文献求助20
4秒前
李梦琦完成签到,获得积分20
4秒前
4秒前
fabian完成签到,获得积分10
4秒前
5秒前
Xue0129完成签到,获得积分10
6秒前
jike发布了新的文献求助10
6秒前
7秒前
纯真的柔发布了新的文献求助10
7秒前
mww完成签到,获得积分10
7秒前
MikiWu完成签到,获得积分10
8秒前
蒋22完成签到 ,获得积分10
8秒前
zoe完成签到 ,获得积分10
8秒前
8秒前
无花果应助skyangar采纳,获得10
8秒前
科研通AI6应助weiyu_u采纳,获得30
8秒前
hehe完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
慕青应助cuarzn采纳,获得10
9秒前
10秒前
玖玖完成签到,获得积分10
10秒前
惜昭发布了新的文献求助10
10秒前
11秒前
文艺代灵完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671