Prediction of surface roughness in extrusion-based additive manufacturing with machine learning

表面粗糙度 熔丝制造 预测建模 热电偶 机器学习 计算机科学 表面光洁度 汽车工业 减色 机械工程 人工智能 3D打印 材料科学 工程类 复合材料 艺术 航空航天工程 视觉艺术
作者
Zhixiong Li,Ziyang Zhang,Junchuan Shi,Dazhong Wu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:57: 488-495 被引量:338
标识
DOI:10.1016/j.rcim.2019.01.004
摘要

Additive manufacturing (AM), also known as 3D printing, has been increasingly adopted in the aerospace, automotive, energy, and healthcare industries over the past few years. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is surface integrity. To improve the surface integrity of additively manufactured parts, a data-driven predictive modeling approach to predicting surface roughness in AM is introduced. Multiple sensors of different types, including thermocouples, infrared temperature sensors, and accelerometers, are used to collect temperature and vibration data. An ensemble learning algorithm is introduced to train the predictive model of surface roughness. Features in the time and frequency domains are extracted from sensor-based condition monitoring data. A subset of these features is selected to improve computational efficiency and prediction accuracy. The predictive model is validated using the condition monitoring data collected from a set of AM tests conducted on a fused filament fabrication (FFF) machine. Experimental results have shown that the proposed predictive modeling approach is capable of predicting the surface roughness of 3D printed components with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助波波玛奇朵采纳,获得10
刚刚
戏言121完成签到,获得积分10
刚刚
迷人的映雁完成签到,获得积分10
1秒前
1秒前
美丽的之双完成签到,获得积分10
2秒前
阿会完成签到,获得积分10
2秒前
wqm完成签到,获得积分10
3秒前
戏言121发布了新的文献求助10
4秒前
4秒前
5秒前
优雅的流沙完成签到 ,获得积分10
6秒前
猫的海完成签到,获得积分10
6秒前
6秒前
Eason Liu完成签到,获得积分0
7秒前
Wendy1204完成签到,获得积分20
7秒前
Hello应助654采纳,获得10
7秒前
咩咩羊完成签到,获得积分10
7秒前
11秒前
lianqing完成签到,获得积分10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
hh应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得30
12秒前
12秒前
Leif应助科研通管家采纳,获得20
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
忘羡222发布了新的文献求助20
15秒前
丰富猕猴桃完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824