Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
jeff完成签到,获得积分10
4秒前
59关闭了59文献求助
4秒前
可耐的嫣娆完成签到,获得积分10
8秒前
无花果应助hzz采纳,获得10
8秒前
音悦台发布了新的文献求助30
9秒前
12秒前
threewei完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
清欢完成签到 ,获得积分10
14秒前
15秒前
xixun关注了科研通微信公众号
15秒前
16秒前
16秒前
解语花发布了新的文献求助50
17秒前
啊啊啊完成签到,获得积分10
18秒前
小琛完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
22秒前
22秒前
36038138完成签到 ,获得积分10
24秒前
XRenaissance发布了新的文献求助10
25秒前
搬砖发布了新的文献求助10
26秒前
26秒前
酱紫完成签到 ,获得积分10
26秒前
淡定妙海发布了新的文献求助10
26秒前
NexusExplorer应助盖世汤圆采纳,获得20
27秒前
27秒前
Azyyyy完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助30
28秒前
28秒前
陈昇发布了新的文献求助10
28秒前
cccf发布了新的文献求助100
29秒前
30秒前
冯俊驰发布了新的文献求助10
31秒前
海马成长痛完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408