亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脚丫完成签到 ,获得积分10
5秒前
29秒前
41秒前
45秒前
47秒前
50秒前
53秒前
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
帅狗完成签到,获得积分10
1分钟前
帅狗发布了新的文献求助10
1分钟前
打打应助帅狗采纳,获得10
2分钟前
2分钟前
积极废物完成签到 ,获得积分10
2分钟前
玄之又玄完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
一二完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
昒冥完成签到,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
昒冥发布了新的文献求助10
4分钟前
ph完成签到 ,获得积分10
5分钟前
Kapur发布了新的文献求助100
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867