Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助CC采纳,获得10
1秒前
1秒前
CKK关闭了CKK文献求助
1秒前
英姑应助欢喜平凡采纳,获得10
1秒前
LongSun发布了新的文献求助10
1秒前
光轮2000完成签到 ,获得积分10
2秒前
youniverse完成签到 ,获得积分10
4秒前
4秒前
4秒前
韩韩完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
健忘的访文完成签到,获得积分10
6秒前
aaa完成签到,获得积分10
6秒前
zsp发布了新的文献求助10
6秒前
子车谷波完成签到,获得积分10
6秒前
彭于晏应助活力的焱采纳,获得10
6秒前
mingming完成签到,获得积分10
6秒前
7秒前
星辰大海应助介入给我i采纳,获得10
7秒前
浩然完成签到,获得积分10
7秒前
7秒前
汉堡包应助自转无风采纳,获得10
8秒前
开心完成签到 ,获得积分10
8秒前
zhou发布了新的文献求助10
8秒前
笑点低的迎梦完成签到,获得积分10
8秒前
CodeCraft应助清水韭菜采纳,获得10
8秒前
zhao完成签到 ,获得积分10
8秒前
shinnosuke应助xy采纳,获得10
9秒前
科研小白完成签到,获得积分10
9秒前
风之晨曦发布了新的文献求助10
10秒前
深情安青应助时丶倾采纳,获得10
10秒前
1233445发布了新的文献求助10
11秒前
笨笨凡之发布了新的文献求助10
11秒前
XU徐完成签到,获得积分20
11秒前
mingming发布了新的文献求助10
12秒前
12秒前
Zx_1993应助林生采纳,获得50
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351421
求助须知:如何正确求助?哪些是违规求助? 4484506
关于积分的说明 13959313
捐赠科研通 4384100
什么是DOI,文献DOI怎么找? 2408752
邀请新用户注册赠送积分活动 1401355
关于科研通互助平台的介绍 1374851