亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
念0完成签到 ,获得积分10
9秒前
哈宁完成签到,获得积分10
12秒前
20秒前
25秒前
sissie发布了新的文献求助10
31秒前
隐形曼青应助ceeray23采纳,获得20
32秒前
杜鑫鹏发布了新的文献求助10
57秒前
Zoe完成签到 ,获得积分10
58秒前
taku完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
mama完成签到 ,获得积分10
1分钟前
Zoye完成签到 ,获得积分10
1分钟前
画晴完成签到,获得积分10
2分钟前
2分钟前
画晴发布了新的文献求助30
2分钟前
深情安青应助谢琳采纳,获得10
2分钟前
在水一方应助sherrydj采纳,获得10
2分钟前
2分钟前
wyx发布了新的文献求助10
2分钟前
2分钟前
英姑应助整齐千柳采纳,获得10
2分钟前
3分钟前
整齐千柳发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
jjqqqj完成签到 ,获得积分10
3分钟前
najd完成签到 ,获得积分10
3分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
CodeCraft应助Kiri_0661采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356965
求助须知:如何正确求助?哪些是违规求助? 4488587
关于积分的说明 13972349
捐赠科研通 4389621
什么是DOI,文献DOI怎么找? 2411667
邀请新用户注册赠送积分活动 1404221
关于科研通互助平台的介绍 1378341