Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cala洛~完成签到 ,获得积分10
1秒前
车访枫完成签到 ,获得积分10
1秒前
小王爱学习给小王爱学习的求助进行了留言
1秒前
量子星尘发布了新的文献求助10
2秒前
YYT发布了新的文献求助10
2秒前
留白完成签到,获得积分10
2秒前
4秒前
韦凌青发布了新的文献求助10
4秒前
1111jfdasfkdanf完成签到 ,获得积分10
4秒前
XZZ发布了新的文献求助10
5秒前
Alan完成签到 ,获得积分10
6秒前
心肝宝贝甜蜜饯完成签到,获得积分10
7秒前
慕青应助Cici采纳,获得10
7秒前
BP完成签到,获得积分10
7秒前
9秒前
李二牛发布了新的文献求助10
10秒前
韦凌青完成签到,获得积分10
10秒前
研友_VZG7GZ应助堵门洞采纳,获得10
11秒前
12秒前
13秒前
岩追研完成签到,获得积分10
14秒前
14秒前
YYT完成签到,获得积分10
15秒前
奥特曼发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
阳佟半仙发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
魔飞发布了新的文献求助10
20秒前
CHENG_2025应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891