Conditional generative adversarial network for 3D rigid‐body motion correction in MRI

人工智能 计算机科学 基本事实 计算机视觉 鉴别器 图像质量 图像(数学) 运动(物理) 工件(错误) 模式识别(心理学) 数学 电信 探测器
作者
Patricia M. Johnson,Maria Drangova
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:82 (3): 901-910 被引量:85
标识
DOI:10.1002/mrm.27772
摘要

Purpose Subject motion in MRI remains an unsolved problem; motion during image acquisition may cause blurring and artifacts that severely degrade image quality. In this work, we approach motion correction as an image‐to‐image translation problem, which refers to the approach of training a deep neural network to predict an image in 1 domain from an image in another domain. Specifically, the purpose of this work was to develop and train a conditional generative adversarial network to predict artifact‐free brain images from motion‐corrupted data. Methods An open source MRI data set comprising T 2 *‐weighted, FLASH magnitude, and phase brain images for 53 patients was used to generate complex image data for motion simulation. To simulate rigid motion, rotations and translations were applied to the image data based on randomly generated motion profiles. A conditional generative adversarial network, comprising a generator and discriminator networks, was trained using the motion‐corrupted and corresponding ground truth (original) images as training pairs. Results The images predicted by the conditional generative adversarial network have improved image quality compared to the motion‐corrupted images. The mean absolute error between the motion‐corrupted and ground‐truth images of the test set was 16.4% of the image mean value, whereas the mean absolute error between the conditional generative adversarial network‐predicted and ground‐truth images was 10.8% The network output also demonstrated improved peak SNR and structural similarity index for all test‐set images. Conclusion The images predicted by the conditional generative adversarial network have quantitatively and qualitatively improved image quality compared to the motion‐corrupted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑着鱼的猫完成签到 ,获得积分10
刚刚
1秒前
fluency完成签到,获得积分20
1秒前
浮游应助Sponge采纳,获得10
1秒前
Akim应助李存采纳,获得10
3秒前
我爱灌肠发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
wwwteng呀完成签到,获得积分10
4秒前
FashionBoy应助splaker7采纳,获得10
4秒前
义气绿柳完成签到,获得积分10
5秒前
6秒前
开放从云完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
传奇3应助YY-Bubble采纳,获得10
7秒前
8秒前
义气绿柳发布了新的文献求助10
9秒前
852应助HHH采纳,获得10
9秒前
10秒前
10秒前
科研通AI6应助NetSenior采纳,获得10
10秒前
在木星发布了新的文献求助10
10秒前
10秒前
小杨发布了新的文献求助10
11秒前
今后应助糊涂的炳采纳,获得10
11秒前
dingjianqiang发布了新的文献求助10
12秒前
0529发布了新的文献求助10
12秒前
13秒前
JY发布了新的文献求助10
15秒前
15秒前
xiong发布了新的文献求助10
15秒前
16秒前
16秒前
在木星完成签到,获得积分10
16秒前
Orange应助整齐千柳采纳,获得10
17秒前
17秒前
Orange应助1111采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400904
求助须知:如何正确求助?哪些是违规求助? 4519974
关于积分的说明 14077499
捐赠科研通 4432892
什么是DOI,文献DOI怎么找? 2433882
邀请新用户注册赠送积分活动 1426087
关于科研通互助平台的介绍 1404695