Identifying Stable Patterns over Time for Emotion Recognition from EEG

脑电图 判别式 情绪识别 情绪分类 计算机科学 人工智能 特征选择 模式识别(心理学) 特征提取 平滑的 心理学 语音识别 神经科学 计算机视觉
作者
Wei‐Long Zheng,Jiayi Zhu,Bao‐Liang Lu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 417-429 被引量:721
标识
DOI:10.1109/taffc.2017.2712143
摘要

In this paper, we investigate stable patterns of electroencephalogram (EEG) over time for emotion recognition using a machine learning approach. Up to now, various findings of activated patterns associated with different emotions have been reported. However, their stability over time has not been fully investigated yet. In this paper, we focus on identifying EEG stability in emotion recognition. We systematically evaluate the performance of various popular feature extraction, feature selection, feature smoothing and pattern classification methods with the DEAP dataset and a newly developed dataset called SEED for this study. Discriminative Graph regularized Extreme Learning Machine with differential entropy features achieves the best average accuracies of 69.67 and 91.07 percent on the DEAP and SEED datasets, respectively. The experimental results indicate that stable patterns exhibit consistency across sessions; the lateral temporal areas activate more for positive emotions than negative emotions in beta and gamma bands; the neural patterns of neutral emotions have higher alpha responses at parietal and occipital sites; and for negative emotions, the neural patterns have significant higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal sites. The performance of our emotion recognition models shows that the neural patterns are relatively stable within and between sessions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助LYS采纳,获得10
1秒前
1秒前
十五完成签到,获得积分10
2秒前
沉默清完成签到 ,获得积分10
2秒前
4秒前
ZZL应助zjz9928采纳,获得20
4秒前
忐忑的老虎完成签到,获得积分10
7秒前
Stardust完成签到,获得积分10
7秒前
8秒前
李德完成签到,获得积分20
9秒前
圆锥香蕉给凩飒的求助进行了留言
12秒前
12秒前
Owen应助zxx5313491采纳,获得10
12秒前
14秒前
无花果应助Jing采纳,获得10
14秒前
15秒前
SciGPT应助wang采纳,获得10
15秒前
NexusExplorer应助wang采纳,获得10
15秒前
yiersan发布了新的文献求助10
17秒前
有魅力的臻完成签到,获得积分10
17秒前
香草山完成签到 ,获得积分10
19秒前
大宝哥哥完成签到 ,获得积分10
20秒前
25秒前
26秒前
27秒前
29秒前
31秒前
SciGPT应助wzwz采纳,获得10
32秒前
33秒前
Jing发布了新的文献求助10
33秒前
34秒前
35秒前
alvin发布了新的文献求助30
35秒前
zxx5313491发布了新的文献求助10
36秒前
曾诚发布了新的文献求助50
38秒前
隐形从梦发布了新的文献求助10
41秒前
CL完成签到,获得积分10
41秒前
俭朴的听寒完成签到,获得积分10
42秒前
佰态发布了新的文献求助10
42秒前
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382