Identifying Stable Patterns over Time for Emotion Recognition from EEG

脑电图 判别式 情绪识别 情绪分类 计算机科学 人工智能 特征选择 模式识别(心理学) 特征提取 平滑的 心理学 语音识别 神经科学 计算机视觉
作者
Wei‐Long Zheng,Jiayi Zhu,Bao‐Liang Lu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 417-429 被引量:721
标识
DOI:10.1109/taffc.2017.2712143
摘要

In this paper, we investigate stable patterns of electroencephalogram (EEG) over time for emotion recognition using a machine learning approach. Up to now, various findings of activated patterns associated with different emotions have been reported. However, their stability over time has not been fully investigated yet. In this paper, we focus on identifying EEG stability in emotion recognition. We systematically evaluate the performance of various popular feature extraction, feature selection, feature smoothing and pattern classification methods with the DEAP dataset and a newly developed dataset called SEED for this study. Discriminative Graph regularized Extreme Learning Machine with differential entropy features achieves the best average accuracies of 69.67 and 91.07 percent on the DEAP and SEED datasets, respectively. The experimental results indicate that stable patterns exhibit consistency across sessions; the lateral temporal areas activate more for positive emotions than negative emotions in beta and gamma bands; the neural patterns of neutral emotions have higher alpha responses at parietal and occipital sites; and for negative emotions, the neural patterns have significant higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal sites. The performance of our emotion recognition models shows that the neural patterns are relatively stable within and between sessions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
有一瓶完成签到,获得积分10
1秒前
称心砖头完成签到,获得积分10
1秒前
汉堡包应助小T儿采纳,获得10
2秒前
狂野书文完成签到,获得积分10
2秒前
爱静静应助otaro采纳,获得40
2秒前
camera发布了新的文献求助10
2秒前
3秒前
3秒前
Hu发布了新的文献求助10
3秒前
iu发布了新的文献求助10
3秒前
好了完成签到,获得积分10
4秒前
4秒前
怡然雨雪完成签到,获得积分10
4秒前
4秒前
科研通AI5应助李唯佳采纳,获得10
4秒前
万能图书馆应助祝雲采纳,获得10
4秒前
我爱学习完成签到 ,获得积分10
5秒前
111完成签到,获得积分10
5秒前
可乐要加冰完成签到,获得积分10
5秒前
深情安青应助郑开司09采纳,获得10
6秒前
娜行发布了新的文献求助10
6秒前
Auoroa完成签到,获得积分10
6秒前
明智之举完成签到,获得积分10
7秒前
赵赵完成签到,获得积分10
7秒前
共享精神应助lalala采纳,获得10
7秒前
Hello应助hf采纳,获得10
7秒前
7秒前
豆丁完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
鹿友菌完成签到,获得积分10
10秒前
皮克斯完成签到 ,获得积分10
10秒前
黑米粥发布了新的文献求助10
10秒前
iu完成签到,获得积分10
10秒前
脑洞疼应助KX采纳,获得10
10秒前
大模型应助艺玲采纳,获得10
11秒前
ZXD完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672