Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 物理 量子力学 电气工程 程序设计语言 操作系统
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lv发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Owen应助菠萝李采纳,获得10
2秒前
2秒前
俞跃完成签到,获得积分10
2秒前
知不知发布了新的文献求助10
2秒前
natmed应助milka采纳,获得20
2秒前
黄义发布了新的文献求助10
2秒前
xu完成签到,获得积分10
3秒前
Inory007完成签到,获得积分10
3秒前
tianmafei发布了新的文献求助10
3秒前
4秒前
4秒前
Owen应助盛欢采纳,获得10
5秒前
Nano完成签到,获得积分10
5秒前
6秒前
SciGPT应助速速來電采纳,获得10
6秒前
新乔完成签到,获得积分10
6秒前
旺旺碎冰冰完成签到,获得积分10
6秒前
黄嘉慧完成签到 ,获得积分10
6秒前
甜甜弘文完成签到,获得积分20
7秒前
寒冷的沛珊完成签到,获得积分10
7秒前
俏皮麦片完成签到,获得积分10
7秒前
8秒前
RFZTSYDH完成签到,获得积分10
8秒前
baocq发布了新的文献求助10
8秒前
9秒前
9秒前
四叶草给四叶草的求助进行了留言
9秒前
zhuang完成签到,获得积分10
9秒前
elidan发布了新的文献求助10
10秒前
广泛的发布了新的文献求助10
10秒前
un完成签到,获得积分10
10秒前
赘婿应助spz150采纳,获得10
11秒前
11秒前
11秒前
包包琪发布了新的文献求助10
14秒前
liao应助晨烨采纳,获得10
14秒前
EKKO完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108