Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 电气工程 物理 操作系统 量子力学 程序设计语言
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
华仔应助多情以山采纳,获得10
1秒前
奔跑西木发布了新的文献求助10
1秒前
1秒前
雨天有伞完成签到,获得积分10
2秒前
ZOLEI完成签到,获得积分10
2秒前
3秒前
超级万声发布了新的文献求助30
3秒前
执着蓝发布了新的文献求助10
3秒前
迷路巧曼完成签到,获得积分20
4秒前
害羞鬼发布了新的文献求助10
5秒前
5秒前
Giannis完成签到,获得积分20
6秒前
超级翠完成签到,获得积分10
6秒前
hzl发布了新的文献求助10
6秒前
6秒前
Aprilapple发布了新的文献求助10
6秒前
嘎嘎发布了新的文献求助20
7秒前
Echo_枕星完成签到 ,获得积分10
7秒前
直率路人完成签到,获得积分10
7秒前
7秒前
8秒前
王宽宽宽发布了新的文献求助10
8秒前
ko1完成签到 ,获得积分10
8秒前
西西发布了新的文献求助10
8秒前
奶油果泥完成签到,获得积分10
9秒前
Akim应助苦苦采纳,获得10
9秒前
科研通AI6应助瞿琼瑶采纳,获得10
9秒前
毛果完成签到,获得积分10
10秒前
一点发布了新的文献求助20
10秒前
keyanrubbish发布了新的文献求助10
10秒前
天晴完成签到,获得积分10
10秒前
buno应助酷波zai采纳,获得10
10秒前
11秒前
烂漫耳机完成签到,获得积分10
12秒前
木槿完成签到,获得积分10
12秒前
科研通AI6应助王志新采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836