Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 电气工程 物理 操作系统 量子力学 程序设计语言
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunflower完成签到,获得积分0
1秒前
1秒前
学学术术小小白白完成签到,获得积分10
1秒前
布丁完成签到,获得积分10
1秒前
距破之舞完成签到,获得积分10
1秒前
1秒前
SongWhizz发布了新的文献求助10
2秒前
大模型应助布衣采纳,获得10
3秒前
Sonny发布了新的文献求助10
3秒前
Kristin完成签到,获得积分10
3秒前
mmm驳回了bkagyin应助
5秒前
量子星尘发布了新的文献求助10
6秒前
HeyU发布了新的文献求助10
6秒前
小倒霉蛋完成签到 ,获得积分10
6秒前
6秒前
6秒前
emilybei发布了新的文献求助10
7秒前
科研通AI6应助larychen采纳,获得10
7秒前
8秒前
畅快的寻凝完成签到,获得积分10
9秒前
lin发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
领导范儿应助诚心黑夜采纳,获得10
12秒前
12秒前
TommyLeo关注了科研通微信公众号
13秒前
hh完成签到,获得积分10
13秒前
Sonny发布了新的文献求助10
13秒前
大哥爱发文章完成签到,获得积分10
14秒前
15秒前
可爱的函函应助larychen采纳,获得10
15秒前
依依发布了新的文献求助10
16秒前
16秒前
咩咩羊发布了新的文献求助10
16秒前
yuyan发布了新的文献求助10
16秒前
樂楽完成签到,获得积分20
17秒前
tree完成签到,获得积分10
17秒前
多宝鱼儿完成签到,获得积分20
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830