Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 物理 量子力学 电气工程 程序设计语言 操作系统
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
北冰洋的夜晚An完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
dandna完成签到 ,获得积分10
3秒前
3秒前
上好佳呀发布了新的文献求助10
5秒前
隐形曼青应助李博士采纳,获得10
6秒前
腌椰菜发布了新的文献求助10
6秒前
6秒前
9秒前
Wjh123456完成签到,获得积分10
9秒前
10秒前
10秒前
coop发布了新的文献求助10
10秒前
子怡完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
Edward发布了新的文献求助10
14秒前
ma发布了新的文献求助10
14秒前
zyy发布了新的文献求助10
15秒前
16秒前
KAZEN完成签到 ,获得积分10
16秒前
CipherSage应助岳岳岳采纳,获得10
17秒前
18秒前
laoleigang完成签到,获得积分10
18秒前
fft发布了新的文献求助10
20秒前
徐月亮完成签到,获得积分20
20秒前
浮游应助淙淙柔水采纳,获得10
20秒前
萧寒发布了新的文献求助10
20秒前
jerry发布了新的文献求助10
21秒前
kevin_kong完成签到,获得积分10
22秒前
Orange应助ma采纳,获得10
23秒前
cardiology完成签到,获得积分10
24秒前
25秒前
25秒前
萧寒完成签到,获得积分10
26秒前
27秒前
fantastic发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458434
求助须知:如何正确求助?哪些是违规求助? 4564465
关于积分的说明 14295221
捐赠科研通 4489353
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466