Day-ahead load forecast using random forest and expert input selection

随机森林 过程(计算) 集合(抽象数据类型) 电力市场 电力系统 期限(时间) 计算机科学 工业工程 可再生能源 运筹学 功率(物理) 数据挖掘 人工智能 工程类 电气工程 物理 操作系统 量子力学 程序设计语言
作者
Ali Lahouar,Jaleleddine Ben Hadj Slama
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:103: 1040-1051 被引量:302
标识
DOI:10.1016/j.enconman.2015.07.041
摘要

Abstract The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Zurlliant采纳,获得10
刚刚
Hunter发布了新的文献求助10
刚刚
刚刚
sasa发布了新的文献求助10
刚刚
傻傻的水杯完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助孤独的幻桃采纳,获得10
3秒前
3秒前
4秒前
温暖访枫发布了新的文献求助10
4秒前
4秒前
Juliet关注了科研通微信公众号
4秒前
喵喵完成签到 ,获得积分10
5秒前
Tingshan发布了新的文献求助10
5秒前
双丁宝贝发布了新的文献求助30
6秒前
折柳完成签到 ,获得积分10
7秒前
mumahuangshu发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助自觉飞风采纳,获得10
8秒前
开朗思卉给开朗思卉的求助进行了留言
9秒前
9秒前
徐小徐完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
XHGG发布了新的文献求助10
11秒前
11秒前
KX发布了新的文献求助10
12秒前
liulu完成签到,获得积分10
13秒前
11发布了新的文献求助10
13秒前
xpgy发布了新的文献求助50
13秒前
13秒前
华仔应助lyp7028采纳,获得10
13秒前
情怀应助LucyLi采纳,获得10
15秒前
15秒前
16秒前
liulu发布了新的文献求助10
16秒前
Rason发布了新的文献求助10
16秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314