清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
carolsoongmm完成签到,获得积分10
48秒前
hu完成签到,获得积分20
56秒前
57秒前
精明代灵完成签到,获得积分10
1分钟前
精明代灵发布了新的文献求助10
1分钟前
hu发布了新的文献求助10
1分钟前
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kklkimo完成签到,获得积分10
1分钟前
慕青应助erjfuhe采纳,获得10
2分钟前
月军完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Wenfeifei发布了新的文献求助50
3分钟前
无私雅柏完成签到 ,获得积分10
4分钟前
orixero应助笑点低的斑马采纳,获得10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
Criminology34应助纯真的傲玉采纳,获得10
4分钟前
Criminology34应助纯真的傲玉采纳,获得10
5分钟前
5分钟前
5分钟前
陳.发布了新的文献求助10
5分钟前
5分钟前
bji完成签到,获得积分10
6分钟前
兰球的仙人掌完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
af完成签到,获得积分10
6分钟前
6分钟前
勤劳的渊思完成签到 ,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
大胆易巧完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
hu发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864111
关于积分的说明 15107906
捐赠科研通 4823161
什么是DOI,文献DOI怎么找? 2582004
邀请新用户注册赠送积分活动 1536099
关于科研通互助平台的介绍 1494513