Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
谢佩奇发布了新的文献求助10
2秒前
chensongyu完成签到,获得积分10
2秒前
凌儿响叮当完成签到 ,获得积分10
4秒前
斯文败类应助重要谷冬采纳,获得10
4秒前
Akim应助甜筒采纳,获得10
4秒前
feimengxia完成签到 ,获得积分10
5秒前
Akim应助茂飞采纳,获得10
7秒前
7秒前
9秒前
10秒前
充电宝应助xia采纳,获得10
11秒前
谢佩奇完成签到,获得积分10
14秒前
Jackie发布了新的文献求助10
14秒前
研友_LJGXgn完成签到,获得积分10
15秒前
云海老发布了新的文献求助10
17秒前
17秒前
Steve完成签到,获得积分20
19秒前
20秒前
21秒前
24秒前
24秒前
24秒前
李爱国应助动听千风采纳,获得10
24秒前
马师发布了新的文献求助10
25秒前
Hello应助科研通管家采纳,获得10
27秒前
大模型应助科研通管家采纳,获得20
27秒前
xuh发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
萧水白应助科研通管家采纳,获得10
27秒前
27秒前
ding应助科研通管家采纳,获得10
27秒前
28秒前
重要谷冬发布了新的文献求助10
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019