已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
吴荣方发布了新的文献求助10
2秒前
壮观大炮完成签到,获得积分10
2秒前
小蘑菇应助热情的未来采纳,获得10
3秒前
Jasper应助轻松的小曾采纳,获得10
4秒前
酷波er应助内向的绿海采纳,获得10
7秒前
充电宝应助内向的绿海采纳,获得10
7秒前
鈮宝完成签到 ,获得积分10
7秒前
WerWu完成签到,获得积分0
10秒前
10秒前
11秒前
医疗废物专用车乘客完成签到,获得积分10
13秒前
小曾发布了新的文献求助10
14秒前
wwt发布了新的文献求助10
16秒前
FashionBoy应助内向的绿海采纳,获得10
19秒前
19秒前
三泥完成签到,获得积分10
19秒前
Fn完成签到 ,获得积分10
21秒前
Momomo应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
24秒前
朱砂完成签到,获得积分10
25秒前
共享精神应助nickel采纳,获得10
25秒前
重要的水壶完成签到,获得积分10
26秒前
枝头树上的布谷鸟完成签到 ,获得积分10
26秒前
大智若愚骨头完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426