Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光坠星海完成签到 ,获得积分10
刚刚
刚刚
lily完成签到,获得积分10
刚刚
1秒前
辉辉应助默默善愁采纳,获得10
2秒前
壮观砖家发布了新的文献求助10
2秒前
2秒前
曹欣然完成签到 ,获得积分10
3秒前
CipherSage应助hp571采纳,获得10
3秒前
4秒前
WayneIII发布了新的文献求助10
4秒前
mse发布了新的文献求助10
5秒前
月流瓦发布了新的文献求助10
6秒前
壮观凡柔发布了新的文献求助10
6秒前
杨霄炫完成签到,获得积分20
7秒前
7秒前
8秒前
XIEQ发布了新的文献求助10
8秒前
打打应助天玄采纳,获得10
8秒前
9秒前
充电宝应助小于采纳,获得10
9秒前
激动的橘子完成签到,获得积分10
10秒前
杨霄炫发布了新的文献求助10
10秒前
小海完成签到 ,获得积分10
12秒前
12秒前
丘比特应助可耐的三德采纳,获得10
13秒前
13秒前
希望天下0贩的0应助LucyLi采纳,获得10
13秒前
erhao完成签到,获得积分10
13秒前
14秒前
zzxxy发布了新的文献求助10
14秒前
shenshi完成签到,获得积分10
15秒前
秀丽以云完成签到,获得积分10
15秒前
Johan完成签到 ,获得积分10
16秒前
欣妍发布了新的文献求助10
17秒前
17秒前
Ava应助Nature_Science采纳,获得10
18秒前
18秒前
Emanon404关注了科研通微信公众号
18秒前
lunar完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602648
求助须知:如何正确求助?哪些是违规求助? 4687718
关于积分的说明 14850857
捐赠科研通 4684814
什么是DOI,文献DOI怎么找? 2539992
邀请新用户注册赠送积分活动 1506766
关于科研通互助平台的介绍 1471445