Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyt完成签到,获得积分10
2秒前
2秒前
PPH完成签到,获得积分10
3秒前
在水一方应助KHromance采纳,获得80
3秒前
3秒前
传奇3应助dada采纳,获得10
3秒前
3秒前
Harssi发布了新的文献求助10
4秒前
共享精神应助满意妙梦采纳,获得10
4秒前
33完成签到,获得积分20
4秒前
4秒前
小左完成签到,获得积分10
5秒前
JINtian发布了新的文献求助30
5秒前
Owen应助pw采纳,获得10
5秒前
6秒前
Hmbb完成签到,获得积分10
6秒前
Csy发布了新的文献求助10
7秒前
7秒前
Mars_X发布了新的文献求助10
7秒前
田様应助一二采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助漂亮的黄豆采纳,获得10
10秒前
Ccc应助寒鸦采纳,获得20
10秒前
10秒前
aerfas发布了新的文献求助10
11秒前
TZMY发布了新的文献求助10
11秒前
11秒前
灵巧大地发布了新的文献求助10
14秒前
14秒前
16秒前
ppp完成签到,获得积分10
17秒前
踏实的道消完成签到 ,获得积分10
18秒前
三岁半发布了新的文献求助10
18秒前
18秒前
19秒前
gnwnb发布了新的文献求助10
19秒前
Jasper应助JINtian采纳,获得10
19秒前
小骨完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599277
求助须知:如何正确求助?哪些是违规求助? 4684870
关于积分的说明 14836779
捐赠科研通 4667525
什么是DOI,文献DOI怎么找? 2537885
邀请新用户注册赠送积分活动 1505359
关于科研通互助平台的介绍 1470776