Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻发布了新的文献求助10
刚刚
sdshi发布了新的文献求助10
1秒前
jiahuilai完成签到 ,获得积分10
1秒前
小马甲应助1234采纳,获得30
1秒前
魁梧的虔发布了新的文献求助70
2秒前
莉莉丝完成签到,获得积分20
3秒前
肚子藤完成签到,获得积分10
3秒前
可靠的凝海应助kytm采纳,获得10
3秒前
知了完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
在水一方应助wcuzhl采纳,获得10
6秒前
浮游应助lzy采纳,获得20
6秒前
浮游应助lzy采纳,获得10
6秒前
Korai完成签到,获得积分10
6秒前
comm完成签到,获得积分10
7秒前
穆一手完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
科研通AI5应助HJJHJH采纳,获得10
8秒前
boluoboluo应助神勇的剑愁采纳,获得10
9秒前
10秒前
11秒前
一支卓发布了新的文献求助10
12秒前
12秒前
雨相所至应助Beni采纳,获得10
12秒前
小鱼儿发布了新的文献求助10
12秒前
Xx丶发布了新的文献求助10
12秒前
可爱的函函应助youmuyou采纳,获得10
13秒前
13秒前
14秒前
喔喔糖发布了新的文献求助30
14秒前
小鹿斑比完成签到,获得积分10
15秒前
16秒前
蒸芋芋了发布了新的文献求助10
16秒前
11关闭了11文献求助
16秒前
科研通AI6应助Xx丶采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939067
求助须知:如何正确求助?哪些是违规求助? 4205665
关于积分的说明 13070583
捐赠科研通 3983843
什么是DOI,文献DOI怎么找? 2181405
邀请新用户注册赠送积分活动 1197245
关于科研通互助平台的介绍 1109450