Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海蓝云天完成签到,获得积分10
1秒前
1秒前
ZZ0110Z完成签到 ,获得积分10
2秒前
3秒前
快乐若云应助老仙翁采纳,获得10
4秒前
烟花应助隔壁的邻家小兴采纳,获得10
4秒前
4秒前
small发布了新的文献求助20
6秒前
wearelulu完成签到,获得积分10
6秒前
6秒前
7秒前
可颂完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
adovj完成签到 ,获得积分10
8秒前
milalala完成签到 ,获得积分10
8秒前
LOTUS完成签到,获得积分10
8秒前
Xin完成签到,获得积分20
9秒前
希望天下0贩的0应助mm采纳,获得10
9秒前
9秒前
Jack发布了新的文献求助10
10秒前
10秒前
10秒前
SciGPT应助幸福小猫采纳,获得10
11秒前
史努比发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
开心绿柳完成签到,获得积分0
12秒前
LOTUS发布了新的文献求助10
13秒前
13秒前
Obliviate完成签到,获得积分10
14秒前
实验顺利完成签到,获得积分10
15秒前
爱学习的小李完成签到 ,获得积分10
15秒前
15秒前
百里幻翠完成签到,获得积分10
15秒前
梅子酒发布了新的文献求助10
16秒前
Jack完成签到,获得积分20
16秒前
无花果应助九月采纳,获得10
17秒前
Lucas应助九月采纳,获得10
17秒前
情怀应助Dreamhappy采纳,获得10
17秒前
初夏完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733391
求助须知:如何正确求助?哪些是违规求助? 5348377
关于积分的说明 15323747
捐赠科研通 4878502
什么是DOI,文献DOI怎么找? 2621247
邀请新用户注册赠送积分活动 1570363
关于科研通互助平台的介绍 1527280