已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 政治学 法学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
矮小的笑槐完成签到,获得积分10
4秒前
5秒前
5秒前
领导范儿应助刘英丽采纳,获得10
5秒前
zhaxiao完成签到,获得积分10
6秒前
沙拉发布了新的文献求助10
6秒前
隐形曼青应助JJ采纳,获得10
6秒前
8秒前
XY发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助寒冷的延恶采纳,获得10
9秒前
乔治完成签到 ,获得积分10
11秒前
科目三应助沙拉采纳,获得10
13秒前
只只完成签到,获得积分10
13秒前
14秒前
zcydbttj2011发布了新的文献求助10
15秒前
怕孤单的sky给nienie的求助进行了留言
15秒前
猪猪hero应助Capybara采纳,获得10
16秒前
张达发布了新的文献求助10
17秒前
深夏完成签到 ,获得积分10
17秒前
18秒前
18秒前
重要问芙brk完成签到,获得积分10
19秒前
20秒前
俊秀的土豆完成签到,获得积分10
21秒前
21秒前
boen完成签到 ,获得积分10
22秒前
科研通AI5应助溪泉采纳,获得10
23秒前
ple完成签到,获得积分10
24秒前
......发布了新的文献求助10
25秒前
今后应助高挑的亦旋采纳,获得10
26秒前
27秒前
炙热的雪完成签到 ,获得积分10
27秒前
纯真冰蝶完成签到 ,获得积分10
30秒前
Judy完成签到 ,获得积分10
31秒前
31秒前
31秒前
研友_VZG7GZ应助zcydbttj2011采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497125
求助须知:如何正确求助?哪些是违规求助? 3081708
关于积分的说明 9169059
捐赠科研通 2774847
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703222