Artificial Neural Networks for Prediction of Medical Device Performance based on Conformity Assessment Data: Infusion and perfusor pumps case study

前馈 一致性 计算机科学 人工神经网络 前馈神经网络 人工智能 机器学习 工程类 控制工程 法学 政治学
作者
Faris Hrvat,Lemana Spahić,Lejla Gurbeta Pokvić,Almir Badnjević
标识
DOI:10.1109/meco49872.2020.9134359
摘要

This paper presents the results of development of Artificial Neural Networks (ANNs) for prediction of medical device performance based on conformity assessment data. Conformity assessment data of medical devices was obtained from periodical inspections conducted by ISO 17020 accredited laboratory during 2015–2019 period. For the development of ANNs, 1738 samples of conformity assessment of infusion and perfusor pumps was used. Out of the overall number of samples, 1391 (80%) of them were used during system development and 346 (20%) samples were used for subsequent validation of system performance. During system development, the impact on overall system accuracy of different number of neurons in hidden layer and the activation functions was tested. Also, two neural network architectures were tested: feedforward and feedback. The results show that feedforward neural network architecture with 10 neurons in single hidden layer has the best performance. The overall accuracy of that neural network is 98.06% for performance prediction of perfusor pumps and 98.83% for performance prediction of infusion pumps. The recurrent neural network resulted in accuracy of 98.41% for both infusion pumps and perfusor pumps. The results show that conformity assessment data obtained through yearly inspections of medical devices can successfully be used for prediction of performance of single medical device. This is very important in increasing the safety and accuracy of diagnosis and treatment of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jasperlee完成签到 ,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
4秒前
hhhhhhh发布了新的文献求助10
5秒前
6秒前
gugugu完成签到,获得积分10
6秒前
李爱国应助MacD采纳,获得10
8秒前
8秒前
8秒前
研友_n0WgDL发布了新的文献求助10
9秒前
李先生完成签到 ,获得积分10
9秒前
光亮的秋白完成签到 ,获得积分10
9秒前
zmzm完成签到,获得积分20
10秒前
合适怡完成签到,获得积分10
11秒前
zhzhzh发布了新的文献求助10
11秒前
辰昜完成签到,获得积分10
12秒前
隐形曼青应助蔡蔡采纳,获得10
12秒前
huang完成签到,获得积分10
13秒前
13秒前
14秒前
大力可燕发布了新的文献求助10
14秒前
科研通AI2S应助Mia采纳,获得30
14秒前
llll完成签到,获得积分10
14秒前
xunxunmimi完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
猫七发布了新的文献求助10
17秒前
Akim应助等乙天采纳,获得10
18秒前
猫七发布了新的文献求助10
18秒前
19秒前
猫七发布了新的文献求助10
20秒前
20秒前
猫七发布了新的文献求助10
20秒前
bkagyin应助受伤的碧曼采纳,获得10
20秒前
猫七发布了新的文献求助10
20秒前
猫七发布了新的文献求助10
21秒前
猫七发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972