纤维素
自愈水凝胶
纳米纤维素
单体
丙烯酸
化学
高分子化学
化学工程
有机化学
聚合物
工程类
作者
Mohammad A. Khalilzadeh,Shahrbano Hosseini,Ali Shokuhi Rad,Richard A. Venditti
标识
DOI:10.1021/acs.jafc.0c03500
摘要
Hydrogels were synthesized by a copolymerization reaction of nanofibrillated cellulose (CNF) with acrylic acid (AA) and acrylamide (AM) and N,N-methylene-bis-acrylamide (MBA) as a cross-linker and their absorption performance as a function of composition was determined. Hydrogels with 4% by weight CNF had swelling of about 250 g/g and with 7% CNF about 200 g/g for water. Thermodynamic and kinetic studies of the reaction pathways and the electronic properties of the cellulose and monomers were investigated through density functional theory calculations. Thermodynamic investigations revealed that the radical formation of cellulose that initiates the hydrogel process can occur through the breaking of the homolytic covalent bonds C6–OH and C3–OH. The results show that the reaction of CNF with monomers is thermodynamically favorable in the decreasing order of AM, AA, and MBA. The kinetic study also indicates that the reaction kinetics of CNF with AM is faster than with AA which is much faster than with MBA. Overall, this study has elucidated some of the key chemical characteristics that impact the derivatization of nanocellulose structures to produce advanced renewable bioproducts.
科研通智能强力驱动
Strongly Powered by AbleSci AI