光老化
小RNA
生物
信号转导
基因表达
小桶
信使核糖核酸
长非编码RNA
人体皮肤
细胞生物学
核糖核酸
计算生物学
基因
转录组
遗传学
作者
Yao Lin,Mengbi Lin,Yufang Liu,Jie Zhang,Wei Lai,Qingfang Xu,Yue Zheng
摘要
Recent researches had reported that microRNAs (miRNAs) played a role in skin photoaging. Our previous study found that long noncoding RNA (lncRNA) expression was changed in the UVA-irradiated skin fibroblasts, but the regulating network of noncoding RNA in UV-induced skin changes has not been elucidated well. Here, we investigated the interactions of miRNA-lncRNA-mRNAs in skin photoaging mechanisms.Human dermal fibroblasts (HDFs) were irradiated with UVA at 10 J/cm2 once a day lasting for 14 days. miRNA expression profiles were detected by high-throughput sequencing. miRNAs changed significantly were identified by qRT-PCR. Functional annotation analysis and pathway enrichment were carried out using Gene Ontology and KEGG, and predicted miRNA-lncRNA-mRNA interactions were performed via bioinformatic analysis.34 differentially expressed miRNAs (>1.5-fold changes, P < .05) after UVA irradiation were identified to interact with distinct lncRNAs. miRNA-lncRNA-mRNA network prediction and regulatory role analysis showed that the gene expression of cellular process, cell part, and binding was mainly coordinated in UVA-irradiated fibroblasts. miRNA-lncRNA-mRNA-signal transduction pathway analysis showed that TNF signaling pathway, thyroid hormone signaling pathway, and lysosome were mainly affected after UVA irradiation.miRNA-lncRNA-mRNA network played a critical part in skin photoaging. Our research provided novel insights into the repeated UVA-induced skin damage in noncoding RNA regulatory field and might help to further understand the delicate interplay of gene regulation at the noncoding RNA level in photoaged skin and UV-induced skin cancers in future researching and provide novel insights into the repeated UVA-damaging pathology and potential targets for preventing human skin photoaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI