A practical guide to multiple imputation of missing data in nephrology

缺少数据 插补(统计学) 联营 统计 计算机科学 数据挖掘 数学 人工智能
作者
Katrina Blazek,Anita van Zwieten,Valeria Saglimbene,Armando Teixeira‐Pinto
出处
期刊:Kidney International [Elsevier]
卷期号:99 (1): 68-74 被引量:111
标识
DOI:10.1016/j.kint.2020.07.035
摘要

Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R. Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静萤发布了新的文献求助10
1秒前
隐形的baby发布了新的文献求助10
1秒前
隐形曼青应助GGMJ采纳,获得10
1秒前
旺仔不甜完成签到,获得积分10
2秒前
丘比特应助June采纳,获得10
4秒前
liusha发布了新的文献求助10
5秒前
Hello应助mira采纳,获得10
7秒前
8秒前
科研通AI6应助小易采纳,获得10
9秒前
lxt完成签到,获得积分10
11秒前
13秒前
13秒前
怜然关注了科研通微信公众号
15秒前
情怀应助李杰采纳,获得10
17秒前
所所应助天天开心采纳,获得10
17秒前
初一发布了新的文献求助10
17秒前
赘婿应助万松辉采纳,获得10
17秒前
18秒前
ysws完成签到,获得积分10
19秒前
Orange应助乐观的颦采纳,获得10
19秒前
完美世界应助June采纳,获得10
21秒前
22秒前
22秒前
闪闪完成签到,获得积分10
24秒前
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
24秒前
所所应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得20
25秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
慎默应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073