亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A practical guide to multiple imputation of missing data in nephrology

缺少数据 插补(统计学) 联营 统计 计算机科学 数据挖掘 数学 人工智能
作者
Katrina Blazek,Anita van Zwieten,Valeria Saglimbene,Armando Teixeira‐Pinto
出处
期刊:Kidney International [Elsevier]
卷期号:99 (1): 68-74 被引量:246
标识
DOI:10.1016/j.kint.2020.07.035
摘要

Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R. Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟消云散发布了新的文献求助10
6秒前
12秒前
姜姜发布了新的文献求助20
14秒前
烟消云散发布了新的文献求助10
16秒前
CipherSage应助科研通管家采纳,获得10
26秒前
26秒前
29秒前
姚老表发布了新的文献求助100
30秒前
31秒前
joe完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
35秒前
Future完成签到 ,获得积分10
35秒前
Yu发布了新的文献求助10
37秒前
39秒前
小蘑菇应助輕瘋采纳,获得10
41秒前
善学以致用应助Yu采纳,获得10
43秒前
徐矜发布了新的文献求助10
45秒前
七点半完成签到,获得积分10
45秒前
1分钟前
情怀应助一直很随意采纳,获得10
1分钟前
1分钟前
我是老大应助Rainy采纳,获得10
1分钟前
1分钟前
烟花应助一直很随意采纳,获得10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
怀民完成签到 ,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
无尽夏完成签到 ,获得积分10
2分钟前
等待寄云完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
我哪知道怎么完成签到 ,获得积分10
2分钟前
可可完成签到 ,获得积分10
2分钟前
YJY完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763940
求助须知:如何正确求助?哪些是违规求助? 5545976
关于积分的说明 15405652
捐赠科研通 4899452
什么是DOI,文献DOI怎么找? 2635572
邀请新用户注册赠送积分活动 1583750
关于科研通互助平台的介绍 1538864