A practical guide to multiple imputation of missing data in nephrology

缺少数据 插补(统计学) 联营 统计 计算机科学 数据挖掘 数学 人工智能
作者
Katrina Blazek,Anita van Zwieten,Valeria Saglimbene,Armando Teixeira‐Pinto
出处
期刊:Kidney International [Elsevier BV]
卷期号:99 (1): 68-74 被引量:111
标识
DOI:10.1016/j.kint.2020.07.035
摘要

Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R. Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
慕青应助w_采纳,获得10
3秒前
文艺代灵发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
6秒前
充电宝应助善良的从霜采纳,获得30
6秒前
6秒前
离枝发布了新的文献求助10
7秒前
白子双发布了新的文献求助10
8秒前
9秒前
9秒前
欣m完成签到,获得积分10
9秒前
许非帆发布了新的文献求助10
10秒前
梨理栗发布了新的文献求助10
10秒前
小爽发布了新的文献求助10
10秒前
10秒前
李健应助ly采纳,获得10
12秒前
酷酷霸发布了新的文献求助10
12秒前
希望天下0贩的0应助ChiLi采纳,获得10
13秒前
FashionBoy应助科研采纳,获得10
13秒前
木cheng发布了新的文献求助10
13秒前
Ava应助美满的小甜瓜采纳,获得10
14秒前
谢建平关注了科研通微信公众号
14秒前
orixero应助WD采纳,获得10
14秒前
Gdhdjxbbx发布了新的文献求助10
17秒前
晴烟ZYM发布了新的文献求助30
17秒前
明亮的代柔完成签到 ,获得积分20
17秒前
18秒前
18秒前
19秒前
小树苗发布了新的文献求助10
19秒前
19秒前
老迟到的可兰完成签到 ,获得积分10
21秒前
jackten发布了新的文献求助10
21秒前
阳光襄完成签到,获得积分10
22秒前
23秒前
nilou完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474