已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A practical guide to multiple imputation of missing data in nephrology

缺少数据 插补(统计学) 联营 统计 计算机科学 数据挖掘 数学 人工智能
作者
Katrina Blazek,Anita van Zwieten,Valeria Saglimbene,Armando Teixeira‐Pinto
出处
期刊:Kidney International [Elsevier]
卷期号:99 (1): 68-74 被引量:246
标识
DOI:10.1016/j.kint.2020.07.035
摘要

Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R. Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
德胜岩山神完成签到,获得积分10
刚刚
大帅比完成签到 ,获得积分10
1秒前
灵巧伊完成签到,获得积分10
2秒前
缺心眼儿发布了新的文献求助10
2秒前
义气丹雪应助slby采纳,获得10
4秒前
泥巴完成签到,获得积分10
4秒前
隐形曼青应助德胜岩山神采纳,获得10
4秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
帅气善斓应助Jsl采纳,获得10
10秒前
12秒前
dzll发布了新的文献求助10
13秒前
滴嘟滴嘟完成签到 ,获得积分10
16秒前
18秒前
dzll完成签到,获得积分10
18秒前
YUE发布了新的文献求助10
18秒前
bc应助科研通管家采纳,获得30
19秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
研友_8K2QJZ完成签到,获得积分10
19秒前
繁华若梦完成签到 ,获得积分10
19秒前
20秒前
20秒前
木棉完成签到,获得积分10
20秒前
隐形曼青应助现代的手套采纳,获得80
21秒前
Arslan完成签到,获得积分20
21秒前
田様应助靖旎采纳,获得10
21秒前
清爽的梦秋完成签到 ,获得积分10
21秒前
旭旭汉堡包完成签到,获得积分10
23秒前
CNS冲完成签到,获得积分10
23秒前
23秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424