A practical guide to multiple imputation of missing data in nephrology

缺少数据 插补(统计学) 联营 统计 计算机科学 数据挖掘 数学 人工智能
作者
Katrina Blazek,Anita van Zwieten,Valeria Saglimbene,Armando Teixeira‐Pinto
出处
期刊:Kidney International [Elsevier]
卷期号:99 (1): 68-74 被引量:246
标识
DOI:10.1016/j.kint.2020.07.035
摘要

Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R. Health data are often plagued with missing values that can greatly reduce the sample size if only complete cases are considered for analysis. Furthermore, analyses that ignore missing data have the potential to introduce bias in the parameter estimates. Multiple imputation techniques have been developed to recover the information that would otherwise be lost when excluding observations with missing data and to help minimize bias. However, the validity of analyses using imputed data relies on the imputation model having been correctly specified. The aim of this guide is to aid the reader in the decision-making process when conducting an analysis with multiply imputed data in the context of nephrology research. We discuss (i) missing mechanism assumption, (ii) imputation method, (iii) imputation model, (iv) derived variables, (v) the number of imputed data sets, (vi) diagnostic checks, (vii) analysis and pooling of results, and (viii) reporting the results. This process is demonstrated using data from the National Health and Nutrition Examination Survey to explore the association between hypertension and kidney disease in adults from the general population. Example code is provided for SAS software and the mice package in R.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spc68应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
和谐青柏应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
luis应助科研通管家采纳,获得10
刚刚
和谐青柏应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
luis应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
spc68应助科研通管家采纳,获得10
1秒前
luis应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
田様应助蓦然采纳,获得10
2秒前
两只鱼丸完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
华仔应助Logan采纳,获得30
3秒前
taimeili发布了新的文献求助10
3秒前
徐晚疯发布了新的文献求助10
4秒前
4秒前
5秒前
六尺巷发布了新的文献求助10
5秒前
leaf关注了科研通微信公众号
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704