The Nomogram Model Predicting Overall Survival and Guiding Clinical Decision in Patients With Glioblastoma Based on the SEER Database

列线图 胶质母细胞瘤 医学 比例危险模型 肿瘤科 内科学 癌症研究
作者
Hongjian Li,Yingya He,Lie-Jun Huang,Hui Luo,Xiao Zhu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:10 被引量:22
标识
DOI:10.3389/fonc.2020.01051
摘要

Background: Patients with glioblastoma have a poor prognosis. We want to develop and validate nomograms for predicting overall survival in patients with glioblastoma. Methods: Data of patients with glioblastoma diagnosed pathologically in the SEER database from 2007 to 2016 were collected by SEER*Stat software. After eliminating invalid and missing clinical information, 3,635 patients (total group) were finally identified and randomly divided into the training group (2,183 cases) and the verification group (1,452 cases). Cox proportional risk regression model was used in the training group, the verification group and the total group to analyze the prognostic factors of patients in the training group, and then the nomogram was constructed. C-indexes and calibration curves were used to evaluate the predictive value of nomogram by internal (training group data) and external validation (verification group data). Results: Cox proportional risk regression model in the training group showed that age, year of diagnosis, laterality, radiation, chemotherapy were all influential factors for prognosis of patients with glioblastoma (P < 0.05) and were all used to construct nomogram as well. The internal and external validation results of nomogram showed that the C-index of the training group was 0.729 [95% CI was (0.715, 0.743)], and the verification group was 0.734 [95% CI was (0.718, 0.750)]. The calibration curves of both groups showed good consistency. Conclusions: The proposed nomogram resulted in accurate prognostic prediction for patients with glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DQY完成签到,获得积分10
刚刚
BONBON完成签到,获得积分20
刚刚
动听导师发布了新的文献求助10
1秒前
1秒前
季忆完成签到,获得积分10
1秒前
小周发布了新的文献求助10
2秒前
smile发布了新的文献求助10
2秒前
3秒前
Lore完成签到 ,获得积分10
3秒前
3秒前
jiang完成签到,获得积分10
4秒前
4秒前
无奈的酒窝关注了科研通微信公众号
5秒前
毛毛完成签到,获得积分10
5秒前
正在完成签到,获得积分10
6秒前
6秒前
充电宝应助JR采纳,获得10
7秒前
7秒前
cc完成签到,获得积分20
7秒前
李爱国应助111采纳,获得10
7秒前
jy发布了新的文献求助10
7秒前
好好完成签到 ,获得积分10
8秒前
阿希塔完成签到,获得积分10
8秒前
JamesPei应助看看采纳,获得10
8秒前
10秒前
10秒前
卢健辉发布了新的文献求助10
10秒前
11秒前
cookie完成签到,获得积分10
11秒前
JMZ完成签到 ,获得积分10
13秒前
英姑应助星星采纳,获得10
13秒前
spurs17发布了新的文献求助30
14秒前
LH完成签到,获得积分10
14秒前
CodeCraft应助Island采纳,获得10
15秒前
annis完成签到,获得积分10
15秒前
小黄应助asir_xw采纳,获得10
16秒前
认真的rain完成签到,获得积分10
16秒前
糊涂的小伙完成签到,获得积分10
17秒前
芒果豆豆完成签到,获得积分10
17秒前
赎罪完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808