The Nomogram Model Predicting Overall Survival and Guiding Clinical Decision in Patients With Glioblastoma Based on the SEER Database

列线图 胶质母细胞瘤 医学 比例危险模型 肿瘤科 内科学 癌症研究
作者
Hongjian Li,Yingya He,Lie-Jun Huang,Hui Luo,Xiao Zhu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10 被引量:22
标识
DOI:10.3389/fonc.2020.01051
摘要

Background: Patients with glioblastoma have a poor prognosis. We want to develop and validate nomograms for predicting overall survival in patients with glioblastoma. Methods: Data of patients with glioblastoma diagnosed pathologically in the SEER database from 2007 to 2016 were collected by SEER*Stat software. After eliminating invalid and missing clinical information, 3,635 patients (total group) were finally identified and randomly divided into the training group (2,183 cases) and the verification group (1,452 cases). Cox proportional risk regression model was used in the training group, the verification group and the total group to analyze the prognostic factors of patients in the training group, and then the nomogram was constructed. C-indexes and calibration curves were used to evaluate the predictive value of nomogram by internal (training group data) and external validation (verification group data). Results: Cox proportional risk regression model in the training group showed that age, year of diagnosis, laterality, radiation, chemotherapy were all influential factors for prognosis of patients with glioblastoma (P < 0.05) and were all used to construct nomogram as well. The internal and external validation results of nomogram showed that the C-index of the training group was 0.729 [95% CI was (0.715, 0.743)], and the verification group was 0.734 [95% CI was (0.718, 0.750)]. The calibration curves of both groups showed good consistency. Conclusions: The proposed nomogram resulted in accurate prognostic prediction for patients with glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocobear完成签到 ,获得积分10
刚刚
不如看海完成签到 ,获得积分10
1秒前
1秒前
直率心锁完成签到,获得积分10
2秒前
2秒前
4秒前
青街向晚发布了新的文献求助10
5秒前
顺心的墨镜完成签到,获得积分10
6秒前
时光倒流的鱼完成签到,获得积分10
6秒前
xzz完成签到,获得积分10
6秒前
认真的画板完成签到,获得积分10
7秒前
温柔的蛋挞完成签到,获得积分10
7秒前
7秒前
和光同尘发布了新的文献求助10
7秒前
标致冬日完成签到,获得积分10
9秒前
黄瓜橙橙发布了新的文献求助10
10秒前
10秒前
Haley完成签到,获得积分10
10秒前
11秒前
我爱科研完成签到 ,获得积分10
11秒前
研学弟完成签到,获得积分10
12秒前
忧心的红酒完成签到,获得积分10
13秒前
14秒前
小瓶盖完成签到 ,获得积分10
14秒前
绍成完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Dailei发布了新的文献求助10
16秒前
bkagyin应助tyzsail采纳,获得10
16秒前
jia完成签到,获得积分10
16秒前
luo完成签到 ,获得积分10
17秒前
MOMO完成签到 ,获得积分10
17秒前
zsj完成签到,获得积分10
19秒前
19秒前
还单身的湘完成签到,获得积分10
20秒前
我是老大应助忧心的红酒采纳,获得10
20秒前
21秒前
yin景景完成签到,获得积分10
21秒前
21秒前
Dailei完成签到,获得积分10
22秒前
稳重的安萱完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027