The Nomogram Model Predicting Overall Survival and Guiding Clinical Decision in Patients With Glioblastoma Based on the SEER Database

列线图 胶质母细胞瘤 医学 比例危险模型 肿瘤科 内科学 癌症研究
作者
Hongjian Li,Yingya He,Lie-Jun Huang,Hui Luo,Xiao Zhu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:10 被引量:22
标识
DOI:10.3389/fonc.2020.01051
摘要

Background: Patients with glioblastoma have a poor prognosis. We want to develop and validate nomograms for predicting overall survival in patients with glioblastoma. Methods: Data of patients with glioblastoma diagnosed pathologically in the SEER database from 2007 to 2016 were collected by SEER*Stat software. After eliminating invalid and missing clinical information, 3,635 patients (total group) were finally identified and randomly divided into the training group (2,183 cases) and the verification group (1,452 cases). Cox proportional risk regression model was used in the training group, the verification group and the total group to analyze the prognostic factors of patients in the training group, and then the nomogram was constructed. C-indexes and calibration curves were used to evaluate the predictive value of nomogram by internal (training group data) and external validation (verification group data). Results: Cox proportional risk regression model in the training group showed that age, year of diagnosis, laterality, radiation, chemotherapy were all influential factors for prognosis of patients with glioblastoma (P < 0.05) and were all used to construct nomogram as well. The internal and external validation results of nomogram showed that the C-index of the training group was 0.729 [95% CI was (0.715, 0.743)], and the verification group was 0.734 [95% CI was (0.718, 0.750)]. The calibration curves of both groups showed good consistency. Conclusions: The proposed nomogram resulted in accurate prognostic prediction for patients with glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助Mr咸蛋黄采纳,获得10
2秒前
2秒前
2秒前
怦怦应助尊敬仙人掌采纳,获得10
3秒前
斯文败类应助尊敬仙人掌采纳,获得10
3秒前
黑粉头头发布了新的文献求助10
4秒前
充电宝应助开朗的自行车采纳,获得10
4秒前
5秒前
persi完成签到 ,获得积分10
7秒前
myth发布了新的文献求助10
8秒前
linxiang完成签到,获得积分10
8秒前
9秒前
9秒前
Jasper应助scl采纳,获得10
10秒前
偌小梁发布了新的文献求助30
10秒前
remimazolam发布了新的文献求助10
11秒前
cnkly发布了新的文献求助50
11秒前
11秒前
leafye完成签到,获得积分10
12秒前
12秒前
曲初雪完成签到,获得积分10
14秒前
领导范儿应助小林采纳,获得10
14秒前
CHEN完成签到,获得积分10
14秒前
Mr咸蛋黄发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
偌小梁完成签到,获得积分10
18秒前
19秒前
19秒前
柔弱元瑶发布了新的文献求助10
19秒前
21秒前
22秒前
judy007应助哇啦哇啦采纳,获得10
22秒前
xy完成签到 ,获得积分10
23秒前
林夏完成签到,获得积分20
23秒前
23秒前
科研通AI2S应助胖狗采纳,获得50
23秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232862
求助须知:如何正确求助?哪些是违规求助? 2879539
关于积分的说明 8211826
捐赠科研通 2547041
什么是DOI,文献DOI怎么找? 1376491
科研通“疑难数据库(出版商)”最低求助积分说明 647648
邀请新用户注册赠送积分活动 623030