A nomogram for predicting overall survival in patients with low‐grade endometrial stromal sarcoma: A population‐based analysis

列线图 医学 子宫内膜间质肉瘤 肿瘤科 生存分析 总体生存率 人口 肉瘤 内科学 间质细胞 病理 环境卫生
作者
Jie Wu,Huibo Zhang,Lan Li,Mengxue Hu,Liang Chen,Bin Xu,Qibin Song
出处
期刊:Cancer communications [Wiley]
卷期号:40 (7): 301-312 被引量:250
标识
DOI:10.1002/cac2.12067
摘要

Low-grade endometrial stromal sarcoma (LG-ESS) is a rare tumor that lacks a prognostic prediction model. Our study aimed to develop a nomogram to predict overall survival of LG-ESS patients.A total of 1172 patients confirmed to have LG-ESS between 1988 and 2015 were selected from the Surveillance, Epidemiology and End Results (SEER) database. They were further divided into a training cohort and a validation cohort. The Akaike information criterion was used to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using concordance index (C-index), area under time-dependent receiver operating characteristic curve (time-dependent AUC), and calibration plots. The net benefits of the nomogram at different threshold probabilities were quantified and compared with those of the International Federation of Gynecology and Obstetrics (FIGO) criteria-based tumor staging using decision curve analysis (DCA). Net reclassification index (NRI) and integrated discrimination improvement (IDI) were also used to compare the nomogram's clinical utility with that of the FIGO criteria-based tumor staging. The risk stratifications of the nomogram and the FIGO criteria-based tumor staging were compared.Seven variables were selected to establish the nomogram for LG-ESS. The C-index (0.814 for the training cohort and 0.837 for the validation cohort) and the time-dependent AUC (> 0.7) indicated satisfactory discriminative ability of the nomogram. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations in both the training and validation cohorts. The NRI values (training cohort: 0.271 for 5-year and 0.433 for 10-year OS prediction; validation cohort: 0.310 for 5-year and 0.383 for 10-year OS prediction) and IDI (training cohort: 0.146 for 5-year and 0.185 for 10-year OS prediction; validation cohort: 0.177 for 5-year and 0.191 for 10-year OS prediction) indicated that the established nomogram performed significantly better than the FIGO criteria-based tumor staging alone (P < 0.05). Furthermore, DCA showed that the nomogram was clinically useful and had better discriminative ability to recognize patients at high risk than the FIGO criteria-based tumor staging.A prognostic nomogram was developed and validated to assist clinicians in evaluating prognosis of LG-ESS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123应助nannan采纳,获得20
1秒前
1秒前
义气香彤发布了新的文献求助10
2秒前
2秒前
王蓉发布了新的文献求助10
3秒前
彭a发布了新的文献求助20
4秒前
8R60d8应助Menand采纳,获得10
4秒前
8R60d8应助service winner采纳,获得10
4秒前
田様应助Robin采纳,获得10
5秒前
6秒前
1Aaa发布了新的文献求助10
6秒前
非也非也6发布了新的文献求助10
7秒前
共享精神应助chao采纳,获得10
8秒前
10秒前
10秒前
书签完成签到,获得积分10
10秒前
wangsai发布了新的文献求助10
10秒前
11秒前
WENYY完成签到,获得积分10
12秒前
neilphilosci发布了新的文献求助30
13秒前
最强魔神完成签到,获得积分0
15秒前
爆米花应助cancan采纳,获得10
15秒前
CipherSage应助1Aaa采纳,获得10
15秒前
ylj1531585955发布了新的文献求助10
16秒前
hong发布了新的文献求助10
16秒前
12发布了新的文献求助10
16秒前
18秒前
认真沅发布了新的文献求助10
18秒前
11完成签到 ,获得积分10
19秒前
19秒前
拾捌完成签到,获得积分10
19秒前
like411发布了新的文献求助10
19秒前
Ava应助Cyrus采纳,获得10
21秒前
21秒前
22秒前
nannan完成签到,获得积分10
22秒前
23秒前
23秒前
领导范儿应助hahaha采纳,获得10
23秒前
ccc关闭了ccc文献求助
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600