已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral estimation of soil composition contents based on kernel principal component analysis and machine learning model

主成分分析 核主成分分析 随机森林 高光谱成像 相关系数 人工智能 支持向量机 降维 均方误差 决定系数 数学 环境科学 土壤科学 计算机科学 核方法 统计
作者
Nan Lin,Haiqi Liu,Jiajia Yang,Hanlin Liu
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (03): 1-1 被引量:6
标识
DOI:10.1117/1.jrs.14.034507
摘要

Organic matter (OM), iron (Fe), and zinc (Zn) in black soil are crucial to ensure high-quality production of agriculture, and hyperspectral technology is an effective approach to achieve a rapid estimation of these soil compositions. Eighty black soil samples were collected in Nehe city, Heilongjiang province, China. With indoor spectral data, the correlation between six spectral reflectance, which includes the original and five other transformed reflectance, and the contents of OM, Fe, and Zn on soil were analyzed. Then with the correlation coefficient significance test (bilateral) calculated at α = 0.01 level to extract sensitive bands, the kernel principal component analysis (KPCA) algorithm was adopted and combined with random forest (RF) and support vector machine (SVM). The combined models were applied for quantitative inversion of soil OM, Fe, and Zn contents and compared them with the models without KPCA dimension reduction. The results show that the determination coefficients and residual prediction deviation for prediction samples of KPCA-RF model (Rp2=0.805 and RPD = 2.329) that adopted to estimate soil OM content are higher than those of RF model (Rp2=0.681 and RPD = 1.820), and the root-mean-square errors for prediction samples of KPCA-RF model (RMSEP = 0.182) are lower than those of RF model (RMSEP = 0.232). Meanwhile, the accuracy of the KPCA-RF model for estimating soil Fe and Zn contents is also higher with Rp2=0.731, 0.710, RMSEP = 0.189, 0.003, and RPD = 1.980, 1.905, respectively. Similarly, the accuracy of the KPCA-SVM model for estimating soil OM, Fe, and Zn contents is higher with Rp2=0.687, 0.609, and 0.585; RMSEP = 0.230, 0.228, and 0.004; and RPD = 1.840, 1.642, and 1.592, separately. Therefore, the machine learning models combined with KPCA are more promising in the quantitative inversion of soil composition contents and can be regarded as an effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pugongying完成签到,获得积分10
2秒前
2秒前
2秒前
天天快乐应助虚拟的凡波采纳,获得10
3秒前
sk夏冰完成签到 ,获得积分10
5秒前
科研的狗完成签到,获得积分10
5秒前
7秒前
7秒前
星际舟发布了新的文献求助10
8秒前
st完成签到,获得积分10
8秒前
9秒前
李D完成签到,获得积分10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
Daphne发布了新的文献求助10
10秒前
10秒前
ding应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得30
11秒前
Ava应助科研通管家采纳,获得10
11秒前
上官雨时发布了新的文献求助10
12秒前
aaa发布了新的文献求助30
14秒前
marshyyy发布了新的文献求助10
16秒前
李爱国应助suxin采纳,获得10
20秒前
20秒前
xzy998应助微笑飞鸟采纳,获得10
22秒前
无名老大应助aaa采纳,获得30
22秒前
24秒前
25秒前
等等发布了新的文献求助10
28秒前
无聊完成签到,获得积分10
30秒前
完美世界应助张大鹅采纳,获得10
30秒前
爆米花应助yao采纳,获得10
33秒前
天天快乐应助嗷大喵采纳,获得10
36秒前
37秒前
38秒前
搜集达人应助孙文杰采纳,获得10
42秒前
42秒前
42秒前
秋秋很困完成签到,获得积分10
42秒前
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319184
求助须知:如何正确求助?哪些是违规求助? 2950435
关于积分的说明 8551448
捐赠科研通 2627453
什么是DOI,文献DOI怎么找? 1437744
科研通“疑难数据库(出版商)”最低求助积分说明 666404
邀请新用户注册赠送积分活动 652388