Hyperspectral estimation of soil composition contents based on kernel principal component analysis and machine learning model

主成分分析 核主成分分析 随机森林 高光谱成像 相关系数 人工智能 支持向量机 降维 均方误差 决定系数 数学 环境科学 土壤科学 计算机科学 核方法 统计
作者
Nan Lin,Haiqi Liu,Jiajia Yang,Hanlin Liu
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (03): 1-1 被引量:6
标识
DOI:10.1117/1.jrs.14.034507
摘要

Organic matter (OM), iron (Fe), and zinc (Zn) in black soil are crucial to ensure high-quality production of agriculture, and hyperspectral technology is an effective approach to achieve a rapid estimation of these soil compositions. Eighty black soil samples were collected in Nehe city, Heilongjiang province, China. With indoor spectral data, the correlation between six spectral reflectance, which includes the original and five other transformed reflectance, and the contents of OM, Fe, and Zn on soil were analyzed. Then with the correlation coefficient significance test (bilateral) calculated at α = 0.01 level to extract sensitive bands, the kernel principal component analysis (KPCA) algorithm was adopted and combined with random forest (RF) and support vector machine (SVM). The combined models were applied for quantitative inversion of soil OM, Fe, and Zn contents and compared them with the models without KPCA dimension reduction. The results show that the determination coefficients and residual prediction deviation for prediction samples of KPCA-RF model (Rp2=0.805 and RPD = 2.329) that adopted to estimate soil OM content are higher than those of RF model (Rp2=0.681 and RPD = 1.820), and the root-mean-square errors for prediction samples of KPCA-RF model (RMSEP = 0.182) are lower than those of RF model (RMSEP = 0.232). Meanwhile, the accuracy of the KPCA-RF model for estimating soil Fe and Zn contents is also higher with Rp2=0.731, 0.710, RMSEP = 0.189, 0.003, and RPD = 1.980, 1.905, respectively. Similarly, the accuracy of the KPCA-SVM model for estimating soil OM, Fe, and Zn contents is higher with Rp2=0.687, 0.609, and 0.585; RMSEP = 0.230, 0.228, and 0.004; and RPD = 1.840, 1.642, and 1.592, separately. Therefore, the machine learning models combined with KPCA are more promising in the quantitative inversion of soil composition contents and can be regarded as an effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丰富发布了新的文献求助10
1秒前
Aman完成签到,获得积分10
4秒前
4秒前
4秒前
seven发布了新的文献求助10
4秒前
四硼酸钠完成签到,获得积分10
5秒前
小坏蛋蛋蛋蛋完成签到,获得积分20
6秒前
酷波er应助悲凉的雁风采纳,获得10
6秒前
丰富完成签到,获得积分10
6秒前
淡定从凝发布了新的文献求助10
8秒前
康嘉伟发布了新的文献求助10
8秒前
蜗牛弄墨完成签到,获得积分20
9秒前
zho应助一三二五七采纳,获得20
10秒前
kk应助26岁顶级保安采纳,获得10
11秒前
11秒前
11秒前
康嘉伟完成签到,获得积分10
14秒前
长亭外完成签到,获得积分10
14秒前
陌影完成签到,获得积分10
14秒前
旷野发布了新的文献求助10
15秒前
共享精神应助seven采纳,获得10
15秒前
刻苦慕晴完成签到 ,获得积分10
16秒前
THEEVE完成签到,获得积分10
17秒前
17秒前
123完成签到,获得积分10
18秒前
李健应助雪花采纳,获得30
19秒前
kk应助26岁顶级保安采纳,获得10
19秒前
许安发布了新的文献求助10
21秒前
conman发布了新的文献求助20
22秒前
23秒前
chris发布了新的文献求助10
28秒前
fengdengjin完成签到,获得积分20
30秒前
思源应助Qwe采纳,获得10
32秒前
33秒前
zho应助一三二五七采纳,获得20
33秒前
在水一方应助认真的又夏采纳,获得10
33秒前
fengdengjin发布了新的文献求助10
34秒前
体贴苞络发布了新的文献求助10
34秒前
在水一方应助科研通管家采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719