A systematic literature review on machine tool energy consumption

能源消耗 标杆管理 机械加工 系统回顾 计算机科学 分析 高效能源利用 机床 能量(信号处理) 制造工程 工业工程 数据科学 工程类 机械工程 业务 统计 电气工程 营销 数学 法学 政治学 梅德林
作者
Nitesh Sihag,Kuldip Singh Sangwan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:275: 123125-123125 被引量:88
标识
DOI:10.1016/j.jclepro.2020.123125
摘要

Energy efficiency has become an integral part of the metal manufacturing industries as a means to improve economic and environmental performance, and increase competitiveness. Machine tools are not only the major energy consumer in the manufacturing industry but also have very low efficiency. Therefore, the analysis of energy consumption by the machine tools is primarily important to understand their complex and dynamic energy consumption behavior. This will lead to the development of better corrective measures. Literature review helps in identifying and assessing the existing knowledge to recognize the future research areas for fostering the research interest on the specific topic. In this review article, the reference literature is identified using a systematic methodology followed by descriptive and content analysis to understand the evolution of research in machining energy. The review focuses on four machining energy aspects – classification, modelling, improvement strategies, and efficiency evaluation. A six level hierarchical model is proposed for better understanding of machining energy classification. The literature review shows that the research in this field intensified after 2009. It is observed that the research focus has shifted towards micro level classification of machining energy including transient states. More detailed and accurate energy consumption models are developed in recent years with increased use of soft computational methods. Real time energy data monitoring and its use for online optimization of machining processes is witnessed. The use of micro analysis, energy benchmarking and standardization of energy assessment indices require more research. Deployment of machining energy models for improving the sustainability of machine tools; data analytics and AI applications; and integration with industry 4.0 are new research opportunities in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kyut发布了新的文献求助10
1秒前
zhanks完成签到,获得积分20
2秒前
yao发布了新的文献求助10
4秒前
5秒前
6秒前
Samuel发布了新的文献求助10
7秒前
7秒前
星辰大海应助Phoo采纳,获得10
8秒前
烟花应助pleiotropy采纳,获得10
8秒前
9秒前
He完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
10秒前
11秒前
五里霜完成签到,获得积分10
12秒前
藏山归完成签到,获得积分10
12秒前
小草莓完成签到,获得积分10
12秒前
杜文静发布了新的文献求助30
12秒前
17秒前
17秒前
神奇的种子完成签到,获得积分10
18秒前
石大伟完成签到 ,获得积分10
19秒前
20秒前
chuhaner发布了新的文献求助10
21秒前
Sylvia_J完成签到 ,获得积分10
22秒前
龙龙冲发布了新的文献求助10
23秒前
cocolu应助Kitty采纳,获得30
23秒前
积极的绿竹完成签到,获得积分10
25秒前
muxinzx发布了新的文献求助10
25秒前
26秒前
大气愚志关注了科研通微信公众号
26秒前
27秒前
lululu发布了新的文献求助10
28秒前
李健的小迷弟应助雅琳子采纳,获得10
29秒前
Samuel完成签到,获得积分10
29秒前
李健的粉丝团团长应助WS采纳,获得10
29秒前
31秒前
俏皮鸵鸟完成签到,获得积分10
32秒前
方乔杉发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664