Bayesian model selection in theM-open setting — Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator

贝叶斯概率 选型 贝叶斯推理 计算机科学 数学 算法 人工智能 机器学习 统计
作者
Riko Kelter
出处
期刊:Journal of Mathematical Psychology [Elsevier BV]
卷期号:100: 102474-102474 被引量:12
标识
DOI:10.1016/j.jmp.2020.102474
摘要

Comparison of competing statistical models is an essential part of psychological research. From a Bayesian perspective, various approaches to model comparison and selection have been proposed in the literature. However, the applicability of these approaches depends on the assumptions about the model space M. Also, traditional methods like leave-one-out cross-validation (LOO-CV) estimate the expected log predictive density (ELPD) of a model to investigate how the model generalises out-of-sample, and quickly become computationally inefficient when sample size becomes large. Here, a tutorial on Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) is provided, which is computationally more efficient. It is shown how Bayesian model selection can be scaled efficiently for big data via PSIS-LOO-CV in combination with approximate posterior inference and probability-proportional-to-size subsampling. First, several model views and the available Bayesian model comparison methods in each are discussed. The Bayesian logistic regression model is then used as a running example to show how to apply the method in practice, and demonstrate that it provides similarly accurate ELPD estimates like LOO-CV or information criteria. Subsequently, the power and exponential law models relating reaction times to practice are used to demonstrate the approach with more complex models. Guidance is provided how to compare competing models based on the ELPD estimates and how to conduct posterior predictive checks to safeguard against overconfidence in one of the models under consideration. The intended audience are researchers who practice mathematical modelling and comparison, possibly with large datasets, and who are well acquainted to Bayesian statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wai完成签到 ,获得积分10
1秒前
许愿完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
5秒前
tianmj发布了新的文献求助10
8秒前
天天完成签到 ,获得积分10
8秒前
迅速的念芹完成签到 ,获得积分10
10秒前
风中的向卉完成签到 ,获得积分10
12秒前
zenabia完成签到 ,获得积分10
25秒前
lilaccalla完成签到 ,获得积分10
25秒前
26秒前
幽默的妍完成签到 ,获得积分10
27秒前
AEROU完成签到 ,获得积分10
34秒前
温暖的定格完成签到,获得积分10
41秒前
涛1完成签到 ,获得积分10
43秒前
冷艳的冬萱完成签到 ,获得积分10
46秒前
DD立芬完成签到 ,获得积分10
50秒前
aiyawy完成签到 ,获得积分10
52秒前
Docline完成签到,获得积分10
52秒前
53秒前
Beyond095完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助30
57秒前
YWang发布了新的文献求助30
58秒前
xybjt完成签到 ,获得积分10
1分钟前
朵朵完成签到,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
1分钟前
wdlc完成签到,获得积分10
1分钟前
心系天下完成签到 ,获得积分10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
danli完成签到 ,获得积分10
1分钟前
1分钟前
鲤鱼越越完成签到 ,获得积分10
1分钟前
平常的羊完成签到 ,获得积分10
1分钟前
yy完成签到 ,获得积分10
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
wonwojo完成签到 ,获得积分10
1分钟前
1分钟前
罐装冰块完成签到,获得积分10
1分钟前
你好完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015