亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian model selection in theM-open setting — Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator

贝叶斯概率 选型 贝叶斯推理 计算机科学 数学 算法 人工智能 机器学习 统计
作者
Riko Kelter
出处
期刊:Journal of Mathematical Psychology [Elsevier]
卷期号:100: 102474-102474 被引量:12
标识
DOI:10.1016/j.jmp.2020.102474
摘要

Comparison of competing statistical models is an essential part of psychological research. From a Bayesian perspective, various approaches to model comparison and selection have been proposed in the literature. However, the applicability of these approaches depends on the assumptions about the model space M. Also, traditional methods like leave-one-out cross-validation (LOO-CV) estimate the expected log predictive density (ELPD) of a model to investigate how the model generalises out-of-sample, and quickly become computationally inefficient when sample size becomes large. Here, a tutorial on Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) is provided, which is computationally more efficient. It is shown how Bayesian model selection can be scaled efficiently for big data via PSIS-LOO-CV in combination with approximate posterior inference and probability-proportional-to-size subsampling. First, several model views and the available Bayesian model comparison methods in each are discussed. The Bayesian logistic regression model is then used as a running example to show how to apply the method in practice, and demonstrate that it provides similarly accurate ELPD estimates like LOO-CV or information criteria. Subsequently, the power and exponential law models relating reaction times to practice are used to demonstrate the approach with more complex models. Guidance is provided how to compare competing models based on the ELPD estimates and how to conduct posterior predictive checks to safeguard against overconfidence in one of the models under consideration. The intended audience are researchers who practice mathematical modelling and comparison, possibly with large datasets, and who are well acquainted to Bayesian statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hayk发布了新的文献求助10
刚刚
fendy完成签到,获得积分0
1秒前
11秒前
薛定谔的猫完成签到,获得积分10
14秒前
hayk完成签到,获得积分20
27秒前
30秒前
么么么发布了新的文献求助10
1分钟前
么么么完成签到 ,获得积分10
1分钟前
科研小刘发布了新的文献求助10
1分钟前
Tethys完成签到 ,获得积分10
1分钟前
垚祎完成签到 ,获得积分10
1分钟前
今后应助顺利山柏采纳,获得10
2分钟前
2分钟前
铅笔羊完成签到 ,获得积分10
2分钟前
别再困了发布了新的文献求助10
2分钟前
2分钟前
bixiao完成签到,获得积分10
2分钟前
别再困了完成签到,获得积分10
2分钟前
bixiao发布了新的文献求助30
2分钟前
科研通AI2S应助小将军采纳,获得10
2分钟前
田様应助叮咚雨采纳,获得10
3分钟前
跳跃的谷雪完成签到 ,获得积分10
3分钟前
dyf完成签到 ,获得积分10
3分钟前
3分钟前
诚心的初露完成签到,获得积分10
3分钟前
大碗完成签到 ,获得积分10
4分钟前
4分钟前
晓晓完成签到 ,获得积分10
4分钟前
顺利山柏发布了新的文献求助10
4分钟前
李白完成签到,获得积分10
4分钟前
4分钟前
yuqinghui98完成签到 ,获得积分10
4分钟前
晓晓发布了新的文献求助10
4分钟前
毛竹完成签到 ,获得积分10
4分钟前
4分钟前
XYSCI发布了新的文献求助10
4分钟前
4分钟前
叮咚雨完成签到 ,获得积分10
4分钟前
4分钟前
XYSCI完成签到,获得积分10
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449807
什么是DOI,文献DOI怎么找? 1303487
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314