Bayesian model selection in theM-open setting — Approximate posterior inference and subsampling for efficient large-scale leave-one-out cross-validation via the difference estimator

贝叶斯概率 选型 贝叶斯推理 计算机科学 数学 算法 人工智能 机器学习 统计
作者
Riko Kelter
出处
期刊:Journal of Mathematical Psychology [Elsevier]
卷期号:100: 102474-102474 被引量:12
标识
DOI:10.1016/j.jmp.2020.102474
摘要

Comparison of competing statistical models is an essential part of psychological research. From a Bayesian perspective, various approaches to model comparison and selection have been proposed in the literature. However, the applicability of these approaches depends on the assumptions about the model space M. Also, traditional methods like leave-one-out cross-validation (LOO-CV) estimate the expected log predictive density (ELPD) of a model to investigate how the model generalises out-of-sample, and quickly become computationally inefficient when sample size becomes large. Here, a tutorial on Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) is provided, which is computationally more efficient. It is shown how Bayesian model selection can be scaled efficiently for big data via PSIS-LOO-CV in combination with approximate posterior inference and probability-proportional-to-size subsampling. First, several model views and the available Bayesian model comparison methods in each are discussed. The Bayesian logistic regression model is then used as a running example to show how to apply the method in practice, and demonstrate that it provides similarly accurate ELPD estimates like LOO-CV or information criteria. Subsequently, the power and exponential law models relating reaction times to practice are used to demonstrate the approach with more complex models. Guidance is provided how to compare competing models based on the ELPD estimates and how to conduct posterior predictive checks to safeguard against overconfidence in one of the models under consideration. The intended audience are researchers who practice mathematical modelling and comparison, possibly with large datasets, and who are well acquainted to Bayesian statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪意完成签到 ,获得积分10
3秒前
优雅含灵完成签到 ,获得积分10
4秒前
lee完成签到 ,获得积分10
6秒前
小呵点完成签到 ,获得积分10
7秒前
秋秋完成签到 ,获得积分10
9秒前
leeSongha完成签到 ,获得积分10
21秒前
傻瓜完成签到 ,获得积分10
23秒前
leibaozun完成签到 ,获得积分10
23秒前
多金多金完成签到 ,获得积分10
23秒前
nannan完成签到 ,获得积分10
23秒前
wssamuel完成签到 ,获得积分10
24秒前
murraya发布了新的文献求助10
28秒前
李思雨完成签到 ,获得积分10
32秒前
美满的小蘑菇完成签到 ,获得积分10
32秒前
娅娃儿完成签到 ,获得积分10
33秒前
包容的忆灵完成签到 ,获得积分10
35秒前
掠影完成签到,获得积分20
36秒前
对对对完成签到 ,获得积分10
40秒前
微光完成签到,获得积分10
41秒前
murraya完成签到,获得积分10
45秒前
王明慧完成签到 ,获得积分10
52秒前
April完成签到,获得积分10
54秒前
科研通AI2S应助April采纳,获得10
59秒前
稳重母鸡完成签到 ,获得积分10
1分钟前
铁风筝芳芳完成签到,获得积分10
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
lysenko完成签到 ,获得积分10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
LPPQBB应助科研通管家采纳,获得30
1分钟前
1分钟前
xcuwlj完成签到 ,获得积分10
1分钟前
陈A完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
小小叶完成签到 ,获得积分20
1分钟前
我本人lrx完成签到 ,获得积分10
1分钟前
Cold-Drink-Shop完成签到,获得积分10
1分钟前
乐观海云发布了新的文献求助30
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347451
求助须知:如何正确求助?哪些是违规求助? 4481760
关于积分的说明 13948066
捐赠科研通 4380032
什么是DOI,文献DOI怎么找? 2406708
邀请新用户注册赠送积分活动 1399288
关于科研通互助平台的介绍 1372428