A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia

脑电图 人工智能 计算机科学 自编码 模式识别(心理学) 支持向量机 双谱 人工神经网络 语音识别 特征提取 心理学 神经科学 光谱密度 电信
作者
Cosimo Ieracitano,Nadia Mammone,Amir Hussain,Francesco Carlo Morabito
出处
期刊:Neural Networks [Elsevier]
卷期号:123: 176-190 被引量:227
标识
DOI:10.1016/j.neunet.2019.12.006
摘要

Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time–frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1234完成签到,获得积分10
刚刚
脑洞疼应助小明采纳,获得10
刚刚
非哲完成签到,获得积分10
1秒前
九香虫发布了新的文献求助30
1秒前
ggg发布了新的文献求助10
2秒前
英姑应助123采纳,获得10
3秒前
3秒前
lalala应助Marlatinda采纳,获得10
3秒前
打打应助biodon采纳,获得10
3秒前
他和她的猫完成签到,获得积分10
3秒前
好气哦发布了新的文献求助10
4秒前
情怀应助zzh0409km采纳,获得10
4秒前
Orange应助huhu采纳,获得10
5秒前
魔幻的盼芙完成签到 ,获得积分10
6秒前
6秒前
7秒前
星辰大海应助123采纳,获得10
8秒前
王算法发布了新的文献求助10
8秒前
9秒前
9秒前
陈宥琛完成签到,获得积分20
9秒前
9秒前
小纯洁发布了新的文献求助10
10秒前
11秒前
好运来发布了新的文献求助10
13秒前
健康的寄风完成签到,获得积分10
13秒前
huhu完成签到,获得积分20
13秒前
13秒前
14秒前
对啊发布了新的文献求助10
14秒前
15秒前
123发布了新的文献求助10
15秒前
好气哦完成签到,获得积分10
15秒前
英俊的铭应助dou采纳,获得10
15秒前
Singularity应助张旭采纳,获得10
16秒前
xuxuxuxuxu完成签到,获得积分10
17秒前
桐桐应助聪明可爱小绘理采纳,获得10
17秒前
张雨露发布了新的文献求助10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234