A Layer-Wise Data Augmentation Strategy for Deep Learning Networks and Its Soft Sensor Application in an Industrial Hydrocracking Process

自编码 软传感器 深度学习 计算机科学 过程(计算) 人工智能 感知器 一般化 人工神经网络 图层(电子) 机器学习 数据挖掘 数学 操作系统 数学分析 有机化学 化学
作者
Xiaofeng Yuan,Chen Ou,Yalin Wang,Chunhua Yang,Weihua Gui
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 3296-3305 被引量:67
标识
DOI:10.1109/tnnls.2019.2951708
摘要

In industrial processes, inferential sensors have been extensively applied for prediction of quality variables that are difficult to measure online directly by hard sensors. Deep learning is a recently developed technique for feature representation of complex data, which has great potentials in soft sensor modeling. However, it often needs a large number of representative data to train and obtain a good deep network. Moreover, layer-wise pretraining often causes information loss and generalization degradation of high hidden layers. This greatly limits the implementation and application of deep learning networks in industrial processes. In this article, a layer-wise data augmentation (LWDA) strategy is proposed for the pretraining of deep learning networks and soft sensor modeling. In particular, the LWDA-based stacked autoencoder (LWDA-SAE) is developed in detail. Finally, the proposed LWDA-SAE model is applied to predict the 10% and 50% boiling points of the aviation kerosene in an industrial hydrocracking process. The results show that the LWDA-SAE-based soft sensor is superior to multilayer perceptron, traditional SAE, and the SAE with data augmentation only for its input layer (IDA-SAE). Moreover, LWDA-SAE can converge at a faster speed with a lower learning error than the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助小华安采纳,获得10
1秒前
感动城发布了新的文献求助10
1秒前
2秒前
guyue发布了新的文献求助10
2秒前
2秒前
Donk发布了新的文献求助10
3秒前
安安发布了新的文献求助10
3秒前
4秒前
4秒前
CYJ发布了新的文献求助10
4秒前
5秒前
小鱼完成签到,获得积分10
5秒前
酷波er应助刘聪聪采纳,获得10
5秒前
SHAO应助飞跃采纳,获得10
5秒前
萌酱发布了新的文献求助10
5秒前
赘婿应助有虎的柜子采纳,获得10
5秒前
6秒前
Nuyoah完成签到,获得积分20
6秒前
zanilia发布了新的文献求助10
6秒前
丘比特应助二十五采纳,获得30
6秒前
6秒前
6秒前
7秒前
7秒前
QIUJIEYANG发布了新的文献求助10
7秒前
迷路翠绿完成签到,获得积分10
7秒前
7秒前
陈醋塔塔完成签到,获得积分0
7秒前
牧愚完成签到,获得积分10
7秒前
李爱国应助Billie采纳,获得30
8秒前
8秒前
隐形曼青应助朽木采纳,获得10
8秒前
123657发布了新的文献求助10
8秒前
Hello应助静静在学呢采纳,获得10
9秒前
赘婿应助生动的小白菜采纳,获得10
9秒前
9秒前
Legend完成签到,获得积分20
10秒前
10秒前
QL完成签到 ,获得积分10
11秒前
嘻嘻发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033