Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning

人工智能 分割 计算机科学 卷积神经网络 基本事实 F1得分 深度学习 人工神经网络 支持向量机 模式识别(心理学) 机器学习 材料科学
作者
Reed Kopp,Joshua Joseph,Brian L. Wardle
出处
期刊:AIAA Scitech 2021 Forum 被引量:1
标识
DOI:10.2514/6.2021-2024
摘要

We present here the development and evaluation of a deep learning (artificial intelligence)-based computer vision machine to automate segmentation of multiclass progressive matrix damage across micro and mesoscales in aerospace-grade advanced composite laminates visualized in 4D via nondestructive in situ mechanical testing coupled with synchrotron radiation computed tomography (SRCT). Leveraging tens of thousands of manually-/human-annotated SRCT tomograms (i.e., 2D virtual cross-sectional slices) encompassing two different aerospace-grade advanced composite laminate systems (standard-thickness-ply and thin-ply) that were SRCT-scanned while under progressive tensile loading, we teach a fully convolutional neural network machine to segment complex polymer matrix damage mechanisms according to their host ply, replacing ~10 hours of trained human labor per scan segmentation (~2000 tomograms per scan) with negligible time to configure the trained machine data-processing pipeline. Evaluating qualitatively and quantitatively the segmented tomograms independently in 2D, as well as collectively in 3D scans, we demonstrate good agreement between the state-of-the-art human-based region growing (semi-manual) method and machine-based segmentation results, summarized by test set macro-averages of the following common classification/segmentation performance metrics: 79% for F1 score (harmonic mean of precision and recall) and 67% for intersection over union (IoU) score. Moreover, 2D inspection of segmented damage within tomograms reveals that F1 and IoU scores actually underrate machine performance due to a nontrivial degree of human (used as ground truth) segmentation error, as the machine is found to regularly exceed the human (resulting in F1 and IoU score penalties) by discovering new damage instances, augmenting existing diffuse segmentations, and extending segmentations to image artifact-prone specimen edges. Consequently, we discover that deep learning-based segmentation successfully and efficiently characterizes sparse (<<1% of scan volume), extremely complex 3D damage states within SRCT datasets, resolving an intractable computer vision challenge (as viewed through the lens of traditionally programmed automation) and establishing these high-throughput tools as promising candidates to accelerate understanding of basic structure-property relationships in traditional and next-generation advanced composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助manmanzhong采纳,获得30
刚刚
刚刚
刚刚
1o1完成签到,获得积分10
1秒前
ch完成签到,获得积分20
1秒前
1秒前
cwz完成签到,获得积分10
2秒前
情怀应助smilling采纳,获得10
2秒前
2秒前
xiao完成签到 ,获得积分10
2秒前
AAAA完成签到,获得积分10
3秒前
Lucas应助白白采纳,获得10
3秒前
深情安青应助可爱的秋采纳,获得10
3秒前
轩轩发布了新的文献求助10
3秒前
大模型应助刘世豪采纳,获得10
3秒前
4秒前
4秒前
song发布了新的文献求助10
4秒前
Lin发布了新的文献求助10
4秒前
Xiaorong完成签到,获得积分20
5秒前
久居i发布了新的文献求助10
6秒前
乐乐应助ZZY采纳,获得10
6秒前
LW完成签到,获得积分20
6秒前
王少通完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
wangq完成签到 ,获得积分10
8秒前
8秒前
8秒前
科研通AI6应助整齐的忆彤采纳,获得10
8秒前
9秒前
Xiaorong发布了新的文献求助10
9秒前
10秒前
10秒前
张千完成签到,获得积分10
11秒前
11秒前
英姑应助老迟到的元彤采纳,获得10
11秒前
吃一口芝士完成签到 ,获得积分10
12秒前
晴朗完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569