Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning

人工智能 分割 计算机科学 卷积神经网络 基本事实 F1得分 深度学习 人工神经网络 支持向量机 模式识别(心理学) 机器学习 材料科学
作者
Reed Kopp,Joshua Joseph,Brian L. Wardle
出处
期刊:AIAA Scitech 2021 Forum 被引量:1
标识
DOI:10.2514/6.2021-2024
摘要

We present here the development and evaluation of a deep learning (artificial intelligence)-based computer vision machine to automate segmentation of multiclass progressive matrix damage across micro and mesoscales in aerospace-grade advanced composite laminates visualized in 4D via nondestructive in situ mechanical testing coupled with synchrotron radiation computed tomography (SRCT). Leveraging tens of thousands of manually-/human-annotated SRCT tomograms (i.e., 2D virtual cross-sectional slices) encompassing two different aerospace-grade advanced composite laminate systems (standard-thickness-ply and thin-ply) that were SRCT-scanned while under progressive tensile loading, we teach a fully convolutional neural network machine to segment complex polymer matrix damage mechanisms according to their host ply, replacing ~10 hours of trained human labor per scan segmentation (~2000 tomograms per scan) with negligible time to configure the trained machine data-processing pipeline. Evaluating qualitatively and quantitatively the segmented tomograms independently in 2D, as well as collectively in 3D scans, we demonstrate good agreement between the state-of-the-art human-based region growing (semi-manual) method and machine-based segmentation results, summarized by test set macro-averages of the following common classification/segmentation performance metrics: 79% for F1 score (harmonic mean of precision and recall) and 67% for intersection over union (IoU) score. Moreover, 2D inspection of segmented damage within tomograms reveals that F1 and IoU scores actually underrate machine performance due to a nontrivial degree of human (used as ground truth) segmentation error, as the machine is found to regularly exceed the human (resulting in F1 and IoU score penalties) by discovering new damage instances, augmenting existing diffuse segmentations, and extending segmentations to image artifact-prone specimen edges. Consequently, we discover that deep learning-based segmentation successfully and efficiently characterizes sparse (<<1% of scan volume), extremely complex 3D damage states within SRCT datasets, resolving an intractable computer vision challenge (as viewed through the lens of traditionally programmed automation) and establishing these high-throughput tools as promising candidates to accelerate understanding of basic structure-property relationships in traditional and next-generation advanced composite materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000发布了新的文献求助10
1秒前
1秒前
冷傲的傲霜完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
LWX完成签到,获得积分10
1秒前
2秒前
勤奋一一应助倩Q采纳,获得10
2秒前
Lime发布了新的文献求助30
2秒前
温暖天与应助糟糕的铁锤采纳,获得10
4秒前
5秒前
变形金刚发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
无花果应助1123采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
YuanLeiZhang完成签到,获得积分10
9秒前
Akim应助ysxl采纳,获得10
9秒前
9秒前
11秒前
今后应助包宇采纳,获得10
11秒前
11秒前
吟月归客完成签到,获得积分10
12秒前
ken发布了新的文献求助30
12秒前
澡雪发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
bkagyin应助000采纳,获得10
13秒前
Yuki发布了新的文献求助10
13秒前
在水一方应助体贴代容采纳,获得10
13秒前
14秒前
14秒前
asdfghjkl发布了新的文献求助10
14秒前
15秒前
积极妙菡发布了新的文献求助10
16秒前
莫123发布了新的文献求助10
17秒前
巴巴塔完成签到,获得积分10
17秒前
斯文败类应助糟糕的铁锤采纳,获得10
18秒前
欣慰阑悦发布了新的文献求助10
18秒前
宋浩奇发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077