Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning

人工智能 分割 计算机科学 卷积神经网络 基本事实 F1得分 深度学习 人工神经网络 支持向量机 模式识别(心理学) 机器学习 材料科学
作者
Reed Kopp,Joshua Joseph,Brian L. Wardle
出处
期刊:AIAA Scitech 2021 Forum 被引量:1
标识
DOI:10.2514/6.2021-2024
摘要

We present here the development and evaluation of a deep learning (artificial intelligence)-based computer vision machine to automate segmentation of multiclass progressive matrix damage across micro and mesoscales in aerospace-grade advanced composite laminates visualized in 4D via nondestructive in situ mechanical testing coupled with synchrotron radiation computed tomography (SRCT). Leveraging tens of thousands of manually-/human-annotated SRCT tomograms (i.e., 2D virtual cross-sectional slices) encompassing two different aerospace-grade advanced composite laminate systems (standard-thickness-ply and thin-ply) that were SRCT-scanned while under progressive tensile loading, we teach a fully convolutional neural network machine to segment complex polymer matrix damage mechanisms according to their host ply, replacing ~10 hours of trained human labor per scan segmentation (~2000 tomograms per scan) with negligible time to configure the trained machine data-processing pipeline. Evaluating qualitatively and quantitatively the segmented tomograms independently in 2D, as well as collectively in 3D scans, we demonstrate good agreement between the state-of-the-art human-based region growing (semi-manual) method and machine-based segmentation results, summarized by test set macro-averages of the following common classification/segmentation performance metrics: 79% for F1 score (harmonic mean of precision and recall) and 67% for intersection over union (IoU) score. Moreover, 2D inspection of segmented damage within tomograms reveals that F1 and IoU scores actually underrate machine performance due to a nontrivial degree of human (used as ground truth) segmentation error, as the machine is found to regularly exceed the human (resulting in F1 and IoU score penalties) by discovering new damage instances, augmenting existing diffuse segmentations, and extending segmentations to image artifact-prone specimen edges. Consequently, we discover that deep learning-based segmentation successfully and efficiently characterizes sparse (<<1% of scan volume), extremely complex 3D damage states within SRCT datasets, resolving an intractable computer vision challenge (as viewed through the lens of traditionally programmed automation) and establishing these high-throughput tools as promising candidates to accelerate understanding of basic structure-property relationships in traditional and next-generation advanced composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邹万恶发布了新的文献求助10
刚刚
spock完成签到,获得积分10
刚刚
luoribai发布了新的文献求助10
刚刚
碎花晚完成签到 ,获得积分10
1秒前
wuyisha完成签到,获得积分10
2秒前
朋克发布了新的文献求助10
2秒前
3秒前
CodeCraft应助文静修杰采纳,获得10
3秒前
4秒前
orixero应助Meng采纳,获得10
4秒前
野与荷完成签到,获得积分10
5秒前
风中的新竹完成签到,获得积分10
5秒前
奋斗的苹果完成签到,获得积分10
5秒前
邹万恶完成签到,获得积分10
6秒前
279完成签到,获得积分10
6秒前
jiangcai完成签到,获得积分10
6秒前
约定看星星啊完成签到,获得积分10
6秒前
6秒前
脑洞疼应助唐唐的猫咪采纳,获得10
7秒前
zry完成签到,获得积分20
7秒前
来杯拿铁完成签到,获得积分10
8秒前
凶狠的映易完成签到 ,获得积分10
8秒前
8秒前
阿丽阿丽完成签到,获得积分10
8秒前
8秒前
灰灰完成签到,获得积分10
10秒前
nkmenghan完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
老田发布了新的文献求助30
13秒前
霜之哀伤发布了新的文献求助10
13秒前
琪琪发布了新的文献求助10
14秒前
原子界完成签到,获得积分10
14秒前
14秒前
jin完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406