Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning

人工智能 分割 计算机科学 卷积神经网络 基本事实 F1得分 深度学习 人工神经网络 支持向量机 模式识别(心理学) 机器学习 材料科学
作者
Reed Kopp,Joshua Joseph,Brian L. Wardle
出处
期刊:AIAA Scitech 2021 Forum 被引量:1
标识
DOI:10.2514/6.2021-2024
摘要

We present here the development and evaluation of a deep learning (artificial intelligence)-based computer vision machine to automate segmentation of multiclass progressive matrix damage across micro and mesoscales in aerospace-grade advanced composite laminates visualized in 4D via nondestructive in situ mechanical testing coupled with synchrotron radiation computed tomography (SRCT). Leveraging tens of thousands of manually-/human-annotated SRCT tomograms (i.e., 2D virtual cross-sectional slices) encompassing two different aerospace-grade advanced composite laminate systems (standard-thickness-ply and thin-ply) that were SRCT-scanned while under progressive tensile loading, we teach a fully convolutional neural network machine to segment complex polymer matrix damage mechanisms according to their host ply, replacing ~10 hours of trained human labor per scan segmentation (~2000 tomograms per scan) with negligible time to configure the trained machine data-processing pipeline. Evaluating qualitatively and quantitatively the segmented tomograms independently in 2D, as well as collectively in 3D scans, we demonstrate good agreement between the state-of-the-art human-based region growing (semi-manual) method and machine-based segmentation results, summarized by test set macro-averages of the following common classification/segmentation performance metrics: 79% for F1 score (harmonic mean of precision and recall) and 67% for intersection over union (IoU) score. Moreover, 2D inspection of segmented damage within tomograms reveals that F1 and IoU scores actually underrate machine performance due to a nontrivial degree of human (used as ground truth) segmentation error, as the machine is found to regularly exceed the human (resulting in F1 and IoU score penalties) by discovering new damage instances, augmenting existing diffuse segmentations, and extending segmentations to image artifact-prone specimen edges. Consequently, we discover that deep learning-based segmentation successfully and efficiently characterizes sparse (<<1% of scan volume), extremely complex 3D damage states within SRCT datasets, resolving an intractable computer vision challenge (as viewed through the lens of traditionally programmed automation) and establishing these high-throughput tools as promising candidates to accelerate understanding of basic structure-property relationships in traditional and next-generation advanced composite materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sav1or发布了新的文献求助10
刚刚
姜姜完成签到,获得积分20
1秒前
Liu发布了新的文献求助10
1秒前
1秒前
石博文发布了新的文献求助10
1秒前
区区应助胖虎采纳,获得50
2秒前
2秒前
2秒前
3秒前
完美世界应助小清新采纳,获得10
3秒前
3秒前
猪猪hero发布了新的文献求助10
5秒前
5秒前
5秒前
NexusExplorer应助liumengyuan采纳,获得10
5秒前
轻松狗发布了新的文献求助10
6秒前
asdxsweef完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
9秒前
9秒前
asdxsweef发布了新的文献求助10
9秒前
zhengzhao发布了新的文献求助10
9秒前
番茄鱼发布了新的文献求助10
9秒前
10秒前
黑色天使完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
天天快乐应助april采纳,获得10
11秒前
标致的香水完成签到,获得积分10
12秒前
科研科发布了新的文献求助10
12秒前
14秒前
美好的夜白完成签到,获得积分20
15秒前
天份完成签到,获得积分10
16秒前
落落发布了新的文献求助30
16秒前
研友_VZG7GZ应助YYQYYQYYQ采纳,获得10
16秒前
彭于晏应助石博文采纳,获得20
16秒前
17秒前
慈祥的丹寒完成签到 ,获得积分10
18秒前
wanci应助wsj采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538