Model-based physiological noise removal in fast fMRI

通信噪声 噪音(视频) 计算机科学 灵敏度(控制系统) 人工智能 自相关 功能磁共振成像 模式识别(心理学) 自回归模型 混叠 信号(编程语言) 语音识别 欠采样 神经科学 数学 心理学 统计 图像(数学) 工程类 哲学 语言学 程序设计语言 电子工程
作者
Uday Agrawal,Emery N. Brown,Laurie Lewis
出处
期刊:NeuroImage [Elsevier]
卷期号:205: 116231-116231 被引量:39
标识
DOI:10.1016/j.neuroimage.2019.116231
摘要

Recent improvements in the speed and sensitivity of fMRI acquisition techniques suggest that fast fMRI can be used to detect and precisely localize sub-second neural dynamics. This enhanced temporal resolution has enormous potential for neuroscientists. However, physiological noise poses a major challenge for the analysis of fast fMRI data. Physiological noise scales with sensitivity, and its autocorrelation structure is altered in rapidly sampled data, suggesting that new approaches are needed for physiological noise removal in fast fMRI. Existing strategies either rely on external physiological recordings, which can be noisy or difficult to collect, or employ data-driven approaches which make assumptions that may not hold true in fast fMRI. We created a statistical model of harmonic regression with autoregressive noise (HRAN) to estimate and remove cardiac and respiratory noise from the fMRI signal directly. This technique exploits the fact that cardiac and respiratory noise signals are fully sampled (rather than aliasing) when imaging at fast rates, allowing us to track and model physiology over time without requiring external physiological measurements. We then created a joint model of neural hemodynamics, and physiological and autocorrelated noise to more accurately remove noise. We first verified that HRAN accurately estimates cardiac and respiratory dynamics and that our model demonstrates goodness-of-fit in fast fMRI data. In task-driven data, we then demonstrated that HRAN is able to remove physiological noise while leaving the neural signal intact, thereby increasing detection of task-driven voxels. Finally, we established that in both simulations and fast fMRI data HRAN is able to improve statistical inferences as compared with gold-standard physiological noise removal techniques. In conclusion, we created a tool that harnesses the novel information in fast fMRI to remove physiological noise, enabling broader use of the technology to study human brain function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WC完成签到,获得积分20
1秒前
1秒前
1秒前
武雨寒完成签到,获得积分10
2秒前
3秒前
5秒前
oooo完成签到,获得积分10
5秒前
zxy发布了新的文献求助10
5秒前
明亮的蓉发布了新的文献求助10
6秒前
tph完成签到 ,获得积分10
6秒前
liangzi完成签到,获得积分20
7秒前
8秒前
WC发布了新的文献求助10
10秒前
125发布了新的文献求助10
10秒前
11秒前
SciGPT应助zxy采纳,获得30
12秒前
sam发布了新的文献求助10
13秒前
yy发布了新的文献求助30
13秒前
摸仙小悦关注了科研通微信公众号
14秒前
15秒前
研友_1LkAmZ完成签到,获得积分10
16秒前
烟花应助mooncake采纳,获得10
17秒前
李骞完成签到,获得积分10
18秒前
18秒前
hh完成签到,获得积分10
18秒前
19秒前
余弦完成签到,获得积分20
20秒前
frank发布了新的文献求助10
22秒前
23秒前
23秒前
zt1812431172完成签到 ,获得积分10
25秒前
卯一完成签到 ,获得积分10
25秒前
26秒前
26秒前
Stephen完成签到,获得积分10
27秒前
27秒前
AAA下水工王哥完成签到,获得积分10
27秒前
28秒前
田晓丹发布了新的文献求助10
29秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463248
求助须知:如何正确求助?哪些是违规求助? 3056670
关于积分的说明 9053304
捐赠科研通 2746544
什么是DOI,文献DOI怎么找? 1507004
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849