LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model

颜色恒定性 人工智能 计算机视觉 计算机科学 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Xutong Ren,Wenhan Yang,Wen-Huang Cheng,Jiaying Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 5862-5876 被引量:222
标识
DOI:10.1109/tip.2020.2984098
摘要

Noise causes unpleasant visual effects in low-light image/video enhancement. In this paper, we aim to make the enhancement model and method aware of noise in the whole process. To deal with heavy noise which is not handled in previous methods, we introduce a robust low-light enhancement approach, aiming at well enhancing low-light images/videos and suppressing intensive noise jointly. Our method is based on the proposed Low-Rank Regularized Retinex Model (LR3M), which is the first to inject low-rank prior into a Retinex decomposition process to suppress noise in the reflectance map. Our method estimates a piece-wise smoothed illumination and a noise-suppressed reflectance sequentially, avoiding remaining noise in the illumination and reflectance maps which are usually presented in alternative decomposition methods. After getting the estimated illumination and reflectance, we adjust the illumination layer and generate our enhancement result. Furthermore, we apply our LR3M to video low-light enhancement. We consider inter-frame coherence of illumination maps and find similar patches through reflectance maps of successive frames to form the low-rank prior to make use of temporal correspondence. Our method performs well for a wide variety of images and videos, and achieves better quality both in enhancing and denoising, compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是否完成签到,获得积分10
刚刚
1秒前
大模型应助wuye采纳,获得30
1秒前
等待凝海发布了新的文献求助10
1秒前
1秒前
清清佑佑发布了新的文献求助10
1秒前
linli发布了新的文献求助10
2秒前
万能图书馆应助wheattt采纳,获得10
2秒前
科研通AI5应助lgf采纳,获得10
3秒前
3秒前
香蕉觅云应助mmm采纳,获得10
5秒前
6秒前
下载文章即可完成签到,获得积分10
7秒前
wei发布了新的文献求助10
7秒前
8秒前
大模型应助曾经二娘采纳,获得10
8秒前
舍得完成签到,获得积分10
9秒前
yyyy完成签到 ,获得积分10
12秒前
苦行僧完成签到,获得积分10
13秒前
明晨应助阿发采纳,获得10
13秒前
13秒前
lgf完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
zhangjianzeng完成签到,获得积分10
17秒前
等待凝海完成签到,获得积分10
19秒前
曾经二娘发布了新的文献求助10
20秒前
月亮发布了新的文献求助10
20秒前
21秒前
科研通AI5应助njr采纳,获得10
21秒前
21秒前
清清佑佑发布了新的文献求助10
21秒前
22秒前
风趣的觅山完成签到,获得积分10
23秒前
AnjeXi发布了新的文献求助30
25秒前
25秒前
fuchao完成签到 ,获得积分20
25秒前
26秒前
李学文啊发布了新的文献求助10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951