清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices

材料科学 压电 机电耦合系数 聚合物 复合材料 平面的 压电系数 联轴节(管道) 共聚物 氟化物 表征(材料科学) 纳米技术 计算机科学 计算机图形学(图像) 无机化学 化学
作者
Jiajun Lin,Mohammad H. Malakooti,Henry A. Sodano
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (19): 21871-21882 被引量:34
标识
DOI:10.1021/acsami.0c03675
摘要

Piezoelectric polymers, such as poly(vinylidene fluoride) (PVDF) and its copolymers, can achieve large strains and high work density under external electrical fields. These materials are highly desirable in the development of electronic devices and intelligent structures. Here, we demonstrate that dehydrofluorination (DHF) can provide a versatile chemical modification of the PVDF homopolymer that yields thermally stable ferroelectricity. The DHF process significantly increases the fraction of planar chain conformation in the PVDF and results in higher piezoelectric coupling with a wider processing temperature range, compared to traditionally processed PVDF. The efficacy of DHF in promoting planar chain conformation is demonstrated through molecular simulation and further proven by experimental characterization. The induced piezoelectric phases by DHF were able to be preserved through high temperature treatments up to 200 °C. The dehydrofluorinated PVDF exhibits improved electromechanical coupling with a high piezoelectric strain coefficient of d31 = 25.12 ± 1.13 pC/N, which can be further improved to 35.12 ± 0.69 pC/N by common mechanical drawing. This high piezoelectric voltage coefficient leads to an excellent actuation and energy harvesting behavior with a power density of 21.96 mW/cm3 in a flexible undrawn PVDF energy harvester, which is 3.13 times higher than conventionally drawn PVDF. The versatile and scalable method for preparing PVDF polymers with high piezoelectric coupling will enable new manufacturing processes not currently compatible with PVDF homopolymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喝酸奶不舔盖完成签到 ,获得积分10
8秒前
无心的秋珊完成签到 ,获得积分10
15秒前
28秒前
bestbanana发布了新的文献求助10
32秒前
bestbanana完成签到,获得积分10
40秒前
乐正怡完成签到 ,获得积分0
1分钟前
JJ完成签到 ,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
聪明的云完成签到 ,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
独步出营完成签到 ,获得积分10
1分钟前
2分钟前
皮老师发布了新的文献求助50
2分钟前
我有一只猫完成签到 ,获得积分10
2分钟前
狞猰应助卡卡罗特先森采纳,获得10
2分钟前
玲家傻妞完成签到 ,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
曾经不言完成签到 ,获得积分10
2分钟前
xiaogang127完成签到 ,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
包子牛奶完成签到,获得积分10
3分钟前
digger2023完成签到 ,获得积分10
4分钟前
脑洞疼应助Royal采纳,获得10
4分钟前
John发布了新的文献求助10
5分钟前
昭荃完成签到 ,获得积分10
5分钟前
深情安青应助喜洋洋采纳,获得10
5分钟前
5分钟前
迷人的沛山完成签到 ,获得积分10
5分钟前
开心每一天完成签到 ,获得积分10
6分钟前
喜洋洋发布了新的文献求助10
7分钟前
tao完成签到 ,获得积分10
7分钟前
imi完成签到 ,获得积分10
7分钟前
Royal完成签到,获得积分10
7分钟前
井小浩完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
牛安荷完成签到,获得积分10
8分钟前
Royal发布了新的文献求助10
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999