The need to belong: A parallel process latent growth curve model of late life negative affect and cognitive function

情感(语言学) 认知 功能(生物学) 增长曲线(统计) 过程(计算) 心理学 潜在增长模型 增长模型 发展心理学 认知心理学 计算机科学 精神科 数学 计量经济学 沟通 生物 遗传学 操作系统 数理经济学
作者
Yuhan Ni,Jenn‐Yun Tein,Minqiang Zhang,Fengquan Zhen,Feifei Huang,Yingshi Huang,Yiming Yao,Jiaqi Mei
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:89: 104049-104049 被引量:19
标识
DOI:10.1016/j.archger.2020.104049
摘要

Late life negative affect (NA) often co-occurs with poor cognitive function (CF); however, very little is known about the mechanism of the relationship between them. We examined the longitudinal relationship between NA and CF over a 12-year period and the effects of several related risk factors in a general sample. Five waves of data on Chinese Longitudinal Healthy Longevity Survey (CLHLS) were collected from a total of 1,314 elderly Chinese, aged 60 and over. A parallel process latent growth curve model with two time-invariant covariates and seven time-varying covariates was used to demonstrate the joint trajectories of NA and CF to assess their related factors in the elderly during a 12-year period. Significant association of negative affect and cognitive decline was found at baseline and over time for our sample. Poorer initial cognitive performance predicted a faster increase in negative affect over time. Being female was associated with worse initial performance and a faster rate of deterioration of NA and CF. Regular exercise, married status, social activities, and Mahjong playing were associated with slower rates of negative affect increase and cognitive decline. These findings demonstrated that the late life negative affect co-occurs with cognitive decline and negative affect might be a mutative mental reaction to cognitive dysfunction. Gender difference, exercise benefit, and the "need to belong" effect were observed over time, highlighting the importance of exercise and socialization for older females.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
包容的剑发布了新的文献求助10
1秒前
SS驳回了ding应助
1秒前
星辰大海应助ZY采纳,获得10
1秒前
丘比特应助鲜艳的棒棒糖采纳,获得10
1秒前
2秒前
3秒前
曾经耳机完成签到 ,获得积分10
3秒前
rain完成签到 ,获得积分10
3秒前
讲道理的卡卡完成签到 ,获得积分10
3秒前
水獭完成签到,获得积分10
3秒前
4秒前
4秒前
快乐滑板完成签到,获得积分0
4秒前
白小白发布了新的文献求助10
5秒前
陈淑玲完成签到,获得积分10
5秒前
6秒前
小刺发布了新的文献求助10
6秒前
机灵安白完成签到 ,获得积分10
7秒前
科研通AI5应助夏夏采纳,获得10
8秒前
酷波er应助夏夏采纳,获得10
8秒前
NexusExplorer应助夏夏采纳,获得10
8秒前
科研通AI2S应助夏夏采纳,获得10
8秒前
积极冷霜发布了新的文献求助10
8秒前
8秒前
Ava应助夏夏采纳,获得10
8秒前
科目三应助夏夏采纳,获得10
8秒前
丘比特应助夏夏采纳,获得10
8秒前
小马甲应助夏夏采纳,获得10
8秒前
8秒前
wary发布了新的文献求助10
9秒前
Genius完成签到,获得积分10
9秒前
张掖发布了新的文献求助10
11秒前
金虎完成签到,获得积分10
11秒前
小董不懂完成签到,获得积分10
11秒前
大晨发布了新的文献求助10
11秒前
斯文败类应助Liu采纳,获得10
12秒前
李爱国应助脆弱的仙人掌采纳,获得10
13秒前
打打应助张自信采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762