结构精修
光致发光
钙钛矿(结构)
正交晶系
纳米晶
材料科学
卤化物
化学稳定性
量子产额
结晶学
纳米技术
晶体结构
化学
光电子学
无机化学
荧光
光学
物理
有机化学
作者
G. Krishnamurthy Grandhi,Noolu Srinivasa Manikanta Viswanath,Jun Hyeong In,Han Bin Cho,Won Bin Im
标识
DOI:10.1021/acs.jpclett.0c00522
摘要
Increasing the stability of lead halide perovskites (LHPs) is required for integrating them into light-emitting devices. To date, most studies toward this direction have primarily concentrated on improving the chemical stability of green-emitting LHPs. In this work, red-emitting CsPbI3–Cs4PbI6 hybrid nanocrystals (NCs) were synthesized with a high photoluminescence (PL) quantum yield of ∼90%. Their hybrid structure was examined via structural (Rietveld) refinement analysis and transmission electron microscopy. Rietveld refinement also revealed that the black polymorph of CsPbI3 NCs is an orthorhombic perovskite rather than a cubic one. The thermodynamic stability of the CsPbI3 NCs in Cs4PbI6 matrices is enhanced in both solutions and films for up to several weeks. The enhanced stability of the embedded CsPbI3 NCs is attributed to the lowering of their Gibbs free energy, as determined on the basis of experimental data. Additionally, the hybrid NCs exhibit unprecedented emission stability—maintaining 65% of their original PL efficiency at 150 °C—and improved aqueous stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI