Real-time defect detection in 3D printing using machine learning

卷积神经网络 3D打印 计算机科学 过程(计算) 人工智能 质量(理念) 钥匙(锁) 特征(语言学) 人工神经网络 产品(数学) 填充 计算机视觉 机器学习 工程制图 工业工程 深度学习 工程类 机械工程 结构工程 语言学 认识论 操作系统 哲学 计算机安全 数学 几何学
作者
Mohammad Farhan Khan,Aftaab Alam,Mohammad Ateeb Siddiqui,Mohammad Saad Alam,Yasser Rafat,Nehal Salik,Ibrahim Alsaidan
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:42: 521-528 被引量:66
标识
DOI:10.1016/j.matpr.2020.10.482
摘要

3D printing or additive manufacturing is one of the key aspects of industry 4.0. However, 3D printing technology has its vulnerabilities due to the defects that develop for various reasons. This project focuses to develop a Convolutional Neural Network (CNN)-Deep Learning model to detect real-time malicious defects to prevent the production losses and reduce human involvement for quality checks. The method proposed here is based on feature extraction of geometrical anomalies occurring in infill patterns due to inconsistent extrusion, weak infills, lack of supports, or sagging and compare it to the features of a perfect 3D print. This approach is built on the concepts of image classification and computer vision using machine learning, which is an extremely popular technology because of the availability of datasets, monitoring systems, and the ability to detect causal relationships of defects. To check the quality of the parts, an integrated camera with the 3D printer captures images at regular intervals and process it using the CNN model. The results of this project are a more optimized and automated 3D printing process with the potential to solve the most widespread problem of product variability in 3D printing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GBRUCE完成签到,获得积分10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
wkjfh应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得20
刚刚
桐桐应助科研通管家采纳,获得30
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
hzhniubility完成签到,获得积分10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
oxo应助科研通管家采纳,获得10
1秒前
JamesPei应助怡然白曼采纳,获得10
1秒前
oxo应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得30
2秒前
jessica完成签到,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
走四方完成签到,获得积分10
3秒前
yuanyuan发布了新的文献求助10
4秒前
4秒前
5秒前
领导范儿应助迷路桃子采纳,获得10
5秒前
5秒前
www发布了新的文献求助10
6秒前
douyq完成签到,获得积分10
6秒前
婉婉发布了新的文献求助10
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427