EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques

冲程(发动机) 任务(项目管理) 医学 缺血性中风 病历 人工智能 机器学习 计算机科学 二元分类 自然语言处理 内科学 缺血 支持向量机 机械工程 工程类 管理 经济
作者
Sheng‐Feng Sung,Chi‐Chang Lin,Ya-Han Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 2922-2931 被引量:40
标识
DOI:10.1109/jbhi.2020.2976931
摘要

Ischemic stroke is a major cause of death and disability in adulthood worldwide. Because it has highly heterogeneous phenotypes, phenotyping of ischemic stroke is an essential task for medical research and clinical prognostication. However, this task is not a trivial one when the study population is large. Phenotyping of ischemic stroke depends primarily on manual annotation of medical records in previous studies. This article evaluated various strategies for automated phenotyping of ischemic stroke into the four subtypes of the Oxfordshire Community Stroke Project classification based on structured and unstructured data from electronical medical records (EMRs). A total of 4640 adult patients who were hospitalized for acute ischemic stroke in a teaching hospital were included. In addition to the structured items in the National Institutes of Health Stroke Scale, unstructured clinical narratives were preprocessed using MetaMap to identify medical concepts, which were then encoded into feature vectors. Various supervised machine learning algorithms were used to build classifiers. The study results indicate that textual information from EMRs could facilitate phenotyping of ischemic stroke when this information was combined with structured information. Furthermore, decomposition of this multi-class problem into binary classification tasks followed by aggregation of classification results could improve the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sxy发布了新的文献求助10
1秒前
大模型应助kjding采纳,获得10
3秒前
3秒前
3秒前
刘企盼完成签到,获得积分10
4秒前
zzzz完成签到,获得积分10
4秒前
丘比特应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
11秒前
Yankai发布了新的文献求助10
12秒前
威武的逍遥完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
慕青应助Ash采纳,获得10
14秒前
17秒前
17秒前
冷静青易发布了新的文献求助10
17秒前
突突突发布了新的文献求助10
18秒前
搞怪羊发布了新的文献求助10
19秒前
桑榆发布了新的文献求助10
19秒前
会飞的猪完成签到,获得积分10
20秒前
火焰向上发布了新的文献求助10
21秒前
hututu完成签到,获得积分20
21秒前
彭于晏应助魔幻的雪旋采纳,获得10
22秒前
冷静青易完成签到,获得积分10
24秒前
25秒前
Mobius完成签到,获得积分10
26秒前
突突突完成签到,获得积分10
27秒前
29秒前
bkagyin应助hs采纳,获得10
31秒前
马小马完成签到 ,获得积分10
31秒前
田様应助sxy采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057411
求助须知:如何正确求助?哪些是违规求助? 2713859
关于积分的说明 7437852
捐赠科研通 2358997
什么是DOI,文献DOI怎么找? 1249650
科研通“疑难数据库(出版商)”最低求助积分说明 607222
版权声明 596328