亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ratio-and-Scale-Aware YOLO for Pedestrian Detection

行人检测 计算机科学 人工智能 纵横比(航空) 目标检测 交叉口(航空) 超参数 计算机视觉 比例(比率) 模式识别(心理学) 行人 图像分辨率 工程类 航空航天工程 材料科学 复合材料 物理 量子力学 运输工程
作者
Wei‐Yen Hsu,Wen‐Yen Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 934-947 被引量:142
标识
DOI:10.1109/tip.2020.3039574
摘要

Current deep learning methods seldom consider the effects of small pedestrian ratios and considerable differences in the aspect ratio of input images, which results in low pedestrian detection performance. This study proposes the ratio-and-scale-aware YOLO (RSA-YOLO) method to solve the aforementioned problems. The following procedure is adopted in this method. First, ratio-aware mechanisms are introduced to dynamically adjust the input layer length and width hyperparameters of YOLOv3, thereby solving the problem of considerable differences in the aspect ratio. Second, intelligent splits are used to automatically and appropriately divide the original images into two local images. Ratio-aware YOLO (RA-YOLO) is iteratively performed on the two local images. Because the original and local images produce low- and high-resolution pedestrian detection information after RA-YOLO, respectively, this study proposes new scale-aware mechanisms in which multiresolution fusion is used to solve the problem of misdetection of remarkably small pedestrians in images. The experimental results indicate that the proposed method produces favorable results for images with extremely small objects and those with considerable differences in the aspect ratio. Compared with the original YOLOs (i.e., YOLOv2 and YOLOv3) and several state-of-the-art approaches, the proposed method demonstrated a superior performance for the VOC 2012 comp4, INRIA, and ETH databases in terms of the average precision, intersection over union, and lowest log-average miss rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
20秒前
萝卜发布了新的文献求助10
25秒前
uss完成签到,获得积分10
30秒前
SciGPT应助萝卜采纳,获得10
35秒前
1分钟前
1分钟前
呆萌念云完成签到 ,获得积分10
1分钟前
qqqq完成签到 ,获得积分10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
Jasper应助务实的翠风采纳,获得30
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
完美世界应助caspar采纳,获得10
1分钟前
熊猫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
共享精神应助灵巧的大开采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
caspar发布了新的文献求助10
3分钟前
YY关注了科研通微信公众号
3分钟前
生动的沛白完成签到 ,获得积分10
3分钟前
3分钟前
null应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI6.1应助一见喜采纳,获得10
4分钟前
YY发布了新的文献求助10
4分钟前
火火完成签到 ,获得积分10
4分钟前
Lampe完成签到,获得积分10
4分钟前
Chere20200628完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739520
求助须知:如何正确求助?哪些是违规求助? 5386817
关于积分的说明 15339751
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624069
邀请新用户注册赠送积分活动 1572769
关于科研通互助平台的介绍 1529575