An alternative multi-model ensemble mean approach for near-term projection

气候学 环境科学 期限(时间) 气候模式 气候变化 系综平均 模式(计算机接口) 投影(关系代数) 系列(地层学) 集合预报 强迫(数学) GCM转录因子 气象学 计算机科学 大气环流模式 地质学 算法 地理 物理 古生物学 海洋学 量子力学 操作系统
作者
Yajie Qi,Cheng Qian,Zhongwei Yan
出处
期刊:International Journal of Climatology [Wiley]
卷期号:37 (1): 109-122 被引量:17
标识
DOI:10.1002/joc.4690
摘要

An ‘alternative multi-model ensemble mean’ (AMME) method was developed for the near-term projection of regional climate change by taking into account the capacity of currently available climate models in simulating specific timescale components. These components included a climatological mean (Mean), an amplitude–frequency modulated annual cycle (MAC), multi-decadal variability (MDV), a secular trend (ST), and short-term variability (SV). The latter four components were extracted adaptively by the ensemble empirical mode decomposition filter from the climate series. For each component, a reconstructed simulation was determined from ensemble of a limited number of model simulations that could reproduce the component in the observation relatively well. An AMME simulation was obtained by combining the five components. The new method was illustrated to construct an AMME simulation of the monthly near-surface temperature series for the training period 1902–1990 in eastern China and was applied to the validation period 1991–2004. For the eastern China average, the best performance arose from MPI-ESM-MR for Mean, IPSL-CM5A-LR for MAC, ACCESS1.3 for MDV, GFDL-ESM2M for ST, and GISS-E2-H-CC for SV. Serving as a novel tool for producing reasonable near-term future climate change scenarios by utilizing currently available model simulations, the AMME exhibited a better performance in reproducing both past and near-term ‘future’ climate than conventional multi-model ensemble means and weighted average schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助gnemnauy采纳,获得10
1秒前
研友_nEWrN8发布了新的文献求助10
1秒前
MMMMM完成签到,获得积分10
1秒前
与蚊不共戴天完成签到,获得积分20
1秒前
芈钥完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助甜的瓜采纳,获得10
2秒前
Ava应助友好绮兰采纳,获得10
3秒前
高高的逍遥完成签到,获得积分20
3秒前
aqaqaqa完成签到,获得积分10
3秒前
从容芮应助稳重茹嫣采纳,获得10
3秒前
4秒前
MMMMM发布了新的文献求助10
4秒前
6秒前
6秒前
冷傲机器猫完成签到,获得积分10
7秒前
科目三应助干啥啥行采纳,获得30
7秒前
orixero应助可爱安筠采纳,获得10
7秒前
9秒前
小白完成签到 ,获得积分10
9秒前
qinzx完成签到,获得积分10
10秒前
11秒前
Owen应助peachsweet采纳,获得10
11秒前
lazysheep完成签到,获得积分10
14秒前
15秒前
司空豁发布了新的文献求助10
15秒前
17秒前
17秒前
xv完成签到,获得积分10
17秒前
庄海棠完成签到 ,获得积分10
17秒前
18秒前
xjcy应助冷酷的枕头采纳,获得10
19秒前
19秒前
我的狗比你的狗狗完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
xx完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298078
求助须知:如何正确求助?哪些是违规求助? 2933093
关于积分的说明 8462019
捐赠科研通 2606096
什么是DOI,文献DOI怎么找? 1422811
科研通“疑难数据库(出版商)”最低求助积分说明 661522
邀请新用户注册赠送积分活动 644850