Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection

人工智能 特征(语言学) 时域 人工神经网络 特征提取 计算机科学 模式识别(心理学) 适应性 振动 休克(循环) 计算机视觉 工程类 声学 哲学 内科学 物理 生物 医学 语言学 生态学
作者
Yunguang Ye,Caihong Huang,Jing Zeng,Yichang Zhou,Fansong Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:186: 109856-109856 被引量:26
标识
DOI:10.1016/j.ymssp.2022.109856
摘要

Failures of rotating mechanical components (e.g., turbine, gear, wheelset) often cause serious shocks to the mechanical system, and real-time detection of these shocks is of importance in maintenance decision-making for the equipment. The service conditions (e.g., rotating speed, load) of rotating machinery are often complex, and therefore the self-adaptability and generalizability of shock detection methods under variable operating conditions is an issue worthy of in-depth study. In this paper, a novel hybrid method combining a threshold-based method for feature extraction and a machine-learning-based method for pattern recognition is developed. This method consists of two steps. First, an adaptive feature called activated time-domain image (ATDI) is proposed, where two adaptive activation functions are proposed to activate the time-domain vibration signals after being preprocessed. The resulting ATDI feature image is highly adaptive and changes adaptively depending on the operating conditions. Then, a hybrid method combining ATDI and deep neural network (ATDI-DNN) is developed, where a circshift-based data augmentation method is introduced for enriching the ATDI feature images. Finally, the proposed ATDI-DNN method is used for wheel flat detection of a railway vehicle under variable operating conditions. Experiments demonstrate that the ATDI-DNN model trained with samples from one speed level can be directly applied to other speed levels, and its superiority is demonstrated by comparative methods. The proposed method can be extended to shock detection of other similar rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
非而者厚应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得50
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
自信晓旋完成签到,获得积分10
1秒前
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
俊秀的半雪完成签到,获得积分10
2秒前
zahngyacheng发布了新的文献求助10
3秒前
ltt完成签到,获得积分10
3秒前
sun发布了新的文献求助10
3秒前
自觉紫安发布了新的文献求助10
4秒前
4秒前
4秒前
研友_R2D2完成签到,获得积分10
6秒前
konya发布了新的文献求助10
7秒前
吴念完成签到,获得积分10
7秒前
MMM完成签到,获得积分10
8秒前
皮凡发布了新的文献求助10
8秒前
9秒前
w0304hf发布了新的文献求助10
9秒前
lili发布了新的文献求助10
9秒前
无花果应助将个烂就采纳,获得10
9秒前
45发布了新的文献求助30
11秒前
Nana发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930