Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection

人工智能 特征(语言学) 时域 人工神经网络 特征提取 计算机科学 模式识别(心理学) 适应性 振动 休克(循环) 计算机视觉 工程类 声学 哲学 内科学 物理 生物 医学 语言学 生态学
作者
Yunguang Ye,Caihong Huang,Jing Zeng,Yichang Zhou,Fansong Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:186: 109856-109856 被引量:26
标识
DOI:10.1016/j.ymssp.2022.109856
摘要

Failures of rotating mechanical components (e.g., turbine, gear, wheelset) often cause serious shocks to the mechanical system, and real-time detection of these shocks is of importance in maintenance decision-making for the equipment. The service conditions (e.g., rotating speed, load) of rotating machinery are often complex, and therefore the self-adaptability and generalizability of shock detection methods under variable operating conditions is an issue worthy of in-depth study. In this paper, a novel hybrid method combining a threshold-based method for feature extraction and a machine-learning-based method for pattern recognition is developed. This method consists of two steps. First, an adaptive feature called activated time-domain image (ATDI) is proposed, where two adaptive activation functions are proposed to activate the time-domain vibration signals after being preprocessed. The resulting ATDI feature image is highly adaptive and changes adaptively depending on the operating conditions. Then, a hybrid method combining ATDI and deep neural network (ATDI-DNN) is developed, where a circshift-based data augmentation method is introduced for enriching the ATDI feature images. Finally, the proposed ATDI-DNN method is used for wheel flat detection of a railway vehicle under variable operating conditions. Experiments demonstrate that the ATDI-DNN model trained with samples from one speed level can be directly applied to other speed levels, and its superiority is demonstrated by comparative methods. The proposed method can be extended to shock detection of other similar rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助caihong1采纳,获得10
刚刚
orixero应助图图采纳,获得10
刚刚
炖蛋完成签到,获得积分10
1秒前
Archy发布了新的文献求助10
1秒前
1秒前
2秒前
ZhangHongyu完成签到,获得积分20
2秒前
LIUYC发布了新的文献求助10
2秒前
2秒前
机灵的煎蛋完成签到,获得积分10
4秒前
Sslya完成签到,获得积分10
5秒前
6秒前
秋夏发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
可耐的汲关注了科研通微信公众号
8秒前
务实青筠完成签到,获得积分10
9秒前
黑粉头头完成签到,获得积分10
9秒前
深情安青应助迷你的颖采纳,获得10
10秒前
10秒前
caosheng发布了新的文献求助30
11秒前
chen发布了新的文献求助10
12秒前
hh发布了新的文献求助10
12秒前
周什么园完成签到,获得积分10
12秒前
zho发布了新的文献求助10
12秒前
12秒前
猪猪hero应助爱学习的曼卉采纳,获得10
12秒前
apollo2002发布了新的文献求助10
14秒前
14秒前
L同学完成签到,获得积分20
15秒前
wanci应助PAD采纳,获得30
17秒前
Rondab应助codekyle采纳,获得10
17秒前
LEX完成签到,获得积分20
18秒前
小小富应助domingo采纳,获得10
18秒前
游悠悠发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513