已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network

医学 Sørensen–骰子系数 人工智能 分割 深度学习 联营 冲程(发动机) 卷积神经网络 模式识别(心理学) 豪斯多夫距离 计算机科学 图像分割 机械工程 工程类
作者
Ariel Iporre-Rivas,Dorothee Saur,Karl Rohr,Gerik Scheuermann,Christina Gillmann
出处
期刊:Journal of medical imaging [SPIE]
卷期号:10 (04)
标识
DOI:10.1117/1.jmi.10.4.044502
摘要

The interpretation of image data plays a critical role during acute brain stroke diagnosis, and promptly defining the requirement of a surgical intervention will drastically impact the patient's outcome. However, determining stroke lesions purely from images can be a daunting task. Many studies proposed automatic segmentation methods for brain stroke lesions from medical images in different modalities, though heretofore results do not satisfy the requirements to be clinically reliable. We investigate the segmentation of brain stroke lesions using a geometric deep learning model that takes advantage of the intrinsic interconnected diffusion features in a set of multi-modal inputs consisting of computer tomography (CT) perfusion parameters.We propose a geometric deep learning model for the segmentation of ischemic stroke brain lesions that employs spline convolutions and unpooling/pooling operators on graphs to excerpt graph-structured features in a fully convolutional network architecture. In addition, we seek to understand the underlying principles governing the different components of our model. Accordingly, we structure the experiments in two parts: an evaluation of different architecture hyperparameters and a comparison with state-of-the-art methods.The ablation study shows that deeper layers obtain a higher Dice coefficient score (DCS) of up to 0.3654. Comparing different pooling and unpooling methods shows that the best performing unpooling method is the proportional approach, yet it often smooths the segmentation border. Unpooling achieves segmentation results more adapted to the lesion boundary corroborated with systematic lower values of Hausdorff distance. The model performs at the level of state-of-the-art models without optimized training methods, such as augmentation or patches, with a DCS of 0.4553±0.0031.We proposed and evaluated an end-to-end trainable fully convolutional graph network architecture using spline convolutional layers for the ischemic stroke lesion prediction. We propose a model that employs graph-based operations to predict acute stroke brain lesions from CT perfusion parameters. Our results prove the feasibility of using geometric deep learning to solve segmentation problems, and our model shows a better performance than other models evaluated. The proposed model achieves improved metric values for the DCS metric, ranging from 8.61% to 69.05%, compared with other models trained under the same conditions. Next, we compare different pooling and unpooling operations in relation to their segmentation results, and we show that the model can produce segmentation outputs that adapt to irregular segmentation boundaries when using simple heuristic unpooling operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
令宏发布了新的文献求助10
3秒前
Jian发布了新的文献求助10
4秒前
4秒前
月亮完成签到 ,获得积分10
4秒前
卡卡东完成签到 ,获得积分10
5秒前
夏日香气发布了新的文献求助10
7秒前
TT0622发布了新的文献求助10
8秒前
太叔十三发布了新的文献求助30
13秒前
13秒前
Jian完成签到,获得积分10
14秒前
阴影完成签到,获得积分10
16秒前
尚可完成签到 ,获得积分10
19秒前
出云天花完成签到,获得积分20
23秒前
星辰大海应助出云天花采纳,获得10
26秒前
科研通AI2S应助莫茹采纳,获得10
34秒前
小小富应助莫茹采纳,获得10
34秒前
duobao鱼发布了新的文献求助10
35秒前
Dritsw完成签到,获得积分10
35秒前
37秒前
haihuhu完成签到 ,获得积分10
38秒前
强健的梦蕊完成签到 ,获得积分10
41秒前
竹桃完成签到 ,获得积分10
41秒前
飞儿随缘完成签到,获得积分10
43秒前
44秒前
CodeCraft应助顺心的舞蹈采纳,获得10
44秒前
44秒前
chuhong完成签到 ,获得积分10
45秒前
旨酒欣欣完成签到,获得积分10
45秒前
46秒前
出云天花发布了新的文献求助10
51秒前
HXY关闭了HXY文献求助
51秒前
X悦发布了新的文献求助10
51秒前
mumu完成签到,获得积分10
53秒前
千纸鹤完成签到 ,获得积分10
56秒前
慕青应助鲜艳的烧鹅采纳,获得10
58秒前
安内大大发布了新的文献求助10
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
李健应助duobao鱼采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510790
关于积分的说明 11155096
捐赠科研通 3245285
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171