亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network

医学 Sørensen–骰子系数 人工智能 分割 深度学习 联营 冲程(发动机) 卷积神经网络 模式识别(心理学) 豪斯多夫距离 计算机科学 图像分割 机械工程 工程类
作者
Ariel Iporre-Rivas,Dorothee Saur,Karl Rohr,Gerik Scheuermann,Christina Gillmann
出处
期刊:Journal of medical imaging [SPIE]
卷期号:10 (04)
标识
DOI:10.1117/1.jmi.10.4.044502
摘要

The interpretation of image data plays a critical role during acute brain stroke diagnosis, and promptly defining the requirement of a surgical intervention will drastically impact the patient's outcome. However, determining stroke lesions purely from images can be a daunting task. Many studies proposed automatic segmentation methods for brain stroke lesions from medical images in different modalities, though heretofore results do not satisfy the requirements to be clinically reliable. We investigate the segmentation of brain stroke lesions using a geometric deep learning model that takes advantage of the intrinsic interconnected diffusion features in a set of multi-modal inputs consisting of computer tomography (CT) perfusion parameters.We propose a geometric deep learning model for the segmentation of ischemic stroke brain lesions that employs spline convolutions and unpooling/pooling operators on graphs to excerpt graph-structured features in a fully convolutional network architecture. In addition, we seek to understand the underlying principles governing the different components of our model. Accordingly, we structure the experiments in two parts: an evaluation of different architecture hyperparameters and a comparison with state-of-the-art methods.The ablation study shows that deeper layers obtain a higher Dice coefficient score (DCS) of up to 0.3654. Comparing different pooling and unpooling methods shows that the best performing unpooling method is the proportional approach, yet it often smooths the segmentation border. Unpooling achieves segmentation results more adapted to the lesion boundary corroborated with systematic lower values of Hausdorff distance. The model performs at the level of state-of-the-art models without optimized training methods, such as augmentation or patches, with a DCS of 0.4553±0.0031.We proposed and evaluated an end-to-end trainable fully convolutional graph network architecture using spline convolutional layers for the ischemic stroke lesion prediction. We propose a model that employs graph-based operations to predict acute stroke brain lesions from CT perfusion parameters. Our results prove the feasibility of using geometric deep learning to solve segmentation problems, and our model shows a better performance than other models evaluated. The proposed model achieves improved metric values for the DCS metric, ranging from 8.61% to 69.05%, compared with other models trained under the same conditions. Next, we compare different pooling and unpooling operations in relation to their segmentation results, and we show that the model can produce segmentation outputs that adapt to irregular segmentation boundaries when using simple heuristic unpooling operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到 ,获得积分10
10秒前
sci2025opt完成签到 ,获得积分10
14秒前
siv完成签到,获得积分10
36秒前
科研通AI6应助懦弱的丹秋采纳,获得10
44秒前
科研兵发布了新的文献求助10
50秒前
天天快乐应助shee采纳,获得10
56秒前
搜集达人应助科研兵采纳,获得10
57秒前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
7分钟前
阔达白凡完成签到,获得积分10
7分钟前
桥西小河完成签到 ,获得积分10
8分钟前
TongKY完成签到 ,获得积分10
8分钟前
8分钟前
美丽的冰枫完成签到,获得积分10
8分钟前
义气的断秋完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827