Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network

医学 Sørensen–骰子系数 人工智能 分割 深度学习 联营 冲程(发动机) 卷积神经网络 模式识别(心理学) 豪斯多夫距离 计算机科学 图像分割 机械工程 工程类
作者
Ariel Iporre-Rivas,Dorothee Saur,Karl Rohr,Gerik Scheuermann,Christina Gillmann
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:10 (04)
标识
DOI:10.1117/1.jmi.10.4.044502
摘要

The interpretation of image data plays a critical role during acute brain stroke diagnosis, and promptly defining the requirement of a surgical intervention will drastically impact the patient's outcome. However, determining stroke lesions purely from images can be a daunting task. Many studies proposed automatic segmentation methods for brain stroke lesions from medical images in different modalities, though heretofore results do not satisfy the requirements to be clinically reliable. We investigate the segmentation of brain stroke lesions using a geometric deep learning model that takes advantage of the intrinsic interconnected diffusion features in a set of multi-modal inputs consisting of computer tomography (CT) perfusion parameters.We propose a geometric deep learning model for the segmentation of ischemic stroke brain lesions that employs spline convolutions and unpooling/pooling operators on graphs to excerpt graph-structured features in a fully convolutional network architecture. In addition, we seek to understand the underlying principles governing the different components of our model. Accordingly, we structure the experiments in two parts: an evaluation of different architecture hyperparameters and a comparison with state-of-the-art methods.The ablation study shows that deeper layers obtain a higher Dice coefficient score (DCS) of up to 0.3654. Comparing different pooling and unpooling methods shows that the best performing unpooling method is the proportional approach, yet it often smooths the segmentation border. Unpooling achieves segmentation results more adapted to the lesion boundary corroborated with systematic lower values of Hausdorff distance. The model performs at the level of state-of-the-art models without optimized training methods, such as augmentation or patches, with a DCS of 0.4553±0.0031.We proposed and evaluated an end-to-end trainable fully convolutional graph network architecture using spline convolutional layers for the ischemic stroke lesion prediction. We propose a model that employs graph-based operations to predict acute stroke brain lesions from CT perfusion parameters. Our results prove the feasibility of using geometric deep learning to solve segmentation problems, and our model shows a better performance than other models evaluated. The proposed model achieves improved metric values for the DCS metric, ranging from 8.61% to 69.05%, compared with other models trained under the same conditions. Next, we compare different pooling and unpooling operations in relation to their segmentation results, and we show that the model can produce segmentation outputs that adapt to irregular segmentation boundaries when using simple heuristic unpooling operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助清风采纳,获得10
2秒前
stuffmatter应助ZQYYRA采纳,获得10
2秒前
科研通AI2S应助liniubi采纳,获得10
3秒前
英姑应助111采纳,获得10
3秒前
sheiskaren发布了新的文献求助10
3秒前
4秒前
巫马尔槐发布了新的文献求助10
4秒前
6秒前
李爱国应助竹外桃花采纳,获得10
7秒前
7秒前
小蘑菇应助coffee采纳,获得10
7秒前
9秒前
笑解烦恼结完成签到,获得积分10
9秒前
热心访风发布了新的文献求助10
10秒前
干净溪流发布了新的文献求助10
10秒前
ZQYYRA完成签到,获得积分10
14秒前
心木完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
18秒前
酷波er应助整齐凌萱采纳,获得10
19秒前
20秒前
20秒前
coffee发布了新的文献求助10
21秒前
21秒前
穿堂风发布了新的文献求助10
21秒前
专注的筝发布了新的文献求助10
22秒前
LZQ921发布了新的文献求助10
22秒前
罗备发布了新的文献求助10
25秒前
老肖应助zhu采纳,获得10
25秒前
26秒前
所所应助穿堂风采纳,获得10
28秒前
思源应助王艺霖采纳,获得10
29秒前
wang研通完成签到,获得积分20
29秒前
加菲丰丰应助毅诚菌采纳,获得20
30秒前
科研通AI2S应助danrushui777采纳,获得30
31秒前
整齐凌萱发布了新的文献求助10
32秒前
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109