已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of ANN-Based Algorithm to Estimate Wintertime Sea Ice Temperature Profile Over the Arctic Ocean

海冰 海冰浓度 冰层 海冰厚度 北极冰盖 亮度温度 海面温度 环境科学 北极的 气候学 浮标 卫星 地质学 遥感 海洋学 微波食品加热 计算机科学 工程类 航空航天工程 电信
作者
Sung-Ho Baek,Eui‐Jong Kang,Byung‐Ju Sohn,Sang‐Woo Kim,Hoyeon Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17
标识
DOI:10.1109/tgrs.2023.3293137
摘要

The thermal structure of the Arctic sea ice is a critical indicator in the atmosphere–sea ice–ocean energy budget and, thus, for understanding Arctic warming and associated climate change. Therefore, understanding this thermal structure and its monitoring should be vital. However, it is challenging to obtain a 3-D view of the thermal structure of the sea ice (such as the temperature profile) through satellite measurements because of the lack of understanding of the nonlinear relationship between sea ice emission and measured radiance at the top of the atmosphere. In this study, a model was developed to estimate the temperature profile within the Arctic sea ice during winter using satellite-borne passive microwave measurements. An artificial neural network (ANN) technique based on deep learning was introduced, and the nonlinear relationship between satellite-measured brightness temperatures and buoy-measured sea ice temperature profiles was learned. The ANN model was mapped and verified using the tenfold cross-validation technique. The developed ANN model was able to restore the sea ice temperatures at all specified levels with correlation coefficients > 0.95, absolute biases < 0.1 K, and root mean square errors < 1.6 K. The retrieved temperature results well represent expected thermal structures, in addition to the snow–sea ice interface temperature similar to that in the published literature. Besides the data for validating climate model simulations, the results also promise applications for improving the sea ice growth model performance by tightly constraining the vertical thermal structure in the sea ice growth model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhizhi完成签到,获得积分20
刚刚
yinjs158发布了新的文献求助10
刚刚
上官若男应助张达采纳,获得10
1秒前
1秒前
2秒前
文静的刺猬完成签到,获得积分20
3秒前
777567发布了新的文献求助10
4秒前
YuuuY发布了新的文献求助10
4秒前
4秒前
5秒前
快乐石头发布了新的文献求助10
5秒前
sweetrumors发布了新的文献求助10
6秒前
wen发布了新的文献求助30
6秒前
柳易槐发布了新的文献求助20
6秒前
小李子发布了新的文献求助10
6秒前
7秒前
8秒前
yourkit发布了新的文献求助30
10秒前
万能图书馆应助萝卜青菜采纳,获得30
10秒前
AS完成签到,获得积分10
11秒前
JamesPei应助松松果采纳,获得10
11秒前
科目三应助施春婷aaa采纳,获得10
11秒前
小吴完成签到,获得积分10
12秒前
qsq完成签到 ,获得积分10
12秒前
哈哈完成签到 ,获得积分10
13秒前
JamesPei应助wysci采纳,获得10
16秒前
初眠完成签到,获得积分10
16秒前
Bottle完成签到,获得积分10
21秒前
21秒前
21秒前
yao驳回了changping应助
22秒前
YuuuY发布了新的文献求助10
22秒前
余哈哈发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
30秒前
帅气天荷完成签到 ,获得积分10
31秒前
施春婷aaa发布了新的文献求助10
32秒前
沉沉浮完成签到 ,获得积分20
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467