重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Development of ANN-Based Algorithm to Estimate Wintertime Sea Ice Temperature Profile Over the Arctic Ocean

海冰 海冰浓度 冰层 海冰厚度 北极冰盖 亮度温度 海面温度 环境科学 北极的 气候学 浮标 卫星 地质学 遥感 海洋学 微波食品加热 计算机科学 工程类 航空航天工程 电信
作者
Sung-Ho Baek,Eui‐Jong Kang,Byung‐Ju Sohn,Sang‐Woo Kim,Hoyeon Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17
标识
DOI:10.1109/tgrs.2023.3293137
摘要

The thermal structure of the Arctic sea ice is a critical indicator in the atmosphere–sea ice–ocean energy budget and, thus, for understanding Arctic warming and associated climate change. Therefore, understanding this thermal structure and its monitoring should be vital. However, it is challenging to obtain a 3-D view of the thermal structure of the sea ice (such as the temperature profile) through satellite measurements because of the lack of understanding of the nonlinear relationship between sea ice emission and measured radiance at the top of the atmosphere. In this study, a model was developed to estimate the temperature profile within the Arctic sea ice during winter using satellite-borne passive microwave measurements. An artificial neural network (ANN) technique based on deep learning was introduced, and the nonlinear relationship between satellite-measured brightness temperatures and buoy-measured sea ice temperature profiles was learned. The ANN model was mapped and verified using the tenfold cross-validation technique. The developed ANN model was able to restore the sea ice temperatures at all specified levels with correlation coefficients > 0.95, absolute biases < 0.1 K, and root mean square errors < 1.6 K. The retrieved temperature results well represent expected thermal structures, in addition to the snow–sea ice interface temperature similar to that in the published literature. Besides the data for validating climate model simulations, the results also promise applications for improving the sea ice growth model performance by tightly constraining the vertical thermal structure in the sea ice growth model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道阻且长发布了新的文献求助10
1秒前
朴实的小懒虫完成签到,获得积分10
1秒前
1秒前
2秒前
Steve发布了新的文献求助10
2秒前
上官若男应助nnnaaaa采纳,获得10
3秒前
科研通AI6应助华国锋采纳,获得20
3秒前
马伊发布了新的文献求助10
3秒前
刚刚好发布了新的文献求助10
3秒前
合适的猎豹完成签到,获得积分10
4秒前
yz完成签到,获得积分10
4秒前
沐晨浠完成签到,获得积分10
4秒前
CiCi完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
隐形萃发布了新的文献求助10
5秒前
xzy998应助FN_09采纳,获得10
5秒前
虚心的皓轩完成签到 ,获得积分10
5秒前
WWWWWll发布了新的文献求助30
6秒前
6秒前
英俊的铭应助沐阳d采纳,获得10
6秒前
6秒前
jin完成签到,获得积分10
7秒前
无花果应助王王采纳,获得10
7秒前
犹豫大侠完成签到,获得积分10
7秒前
Acerie完成签到,获得积分10
7秒前
完美的八宝粥完成签到,获得积分20
8秒前
dyd发布了新的文献求助10
8秒前
genomed应助石头采纳,获得10
8秒前
充电宝应助sci大户采纳,获得10
8秒前
8秒前
你猜完成签到,获得积分10
9秒前
9秒前
梵强斯完成签到,获得积分10
9秒前
领导范儿应助ivy66x采纳,获得10
9秒前
坦率灵槐发布了新的文献求助10
9秒前
hetao发布了新的文献求助10
9秒前
10秒前
海与迟落发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543