COMA-Net: Towards generalized medical image segmentation using complementary attention guided bipolar refinement modules

计算机科学 分割 人工智能 概化理论 特征(语言学) 模式识别(心理学) 医学影像学 编码器 集合(抽象数据类型) 图像分割 数学 语言学 统计 哲学 程序设计语言 操作系统
作者
Shahed Ahmed,Md. Kamrul Hasan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105198-105198 被引量:5
标识
DOI:10.1016/j.bspc.2023.105198
摘要

Precise medical image segmentation is a crucial step for proper isolation of target regions, such as an organ or lesion for accurate medical diagnosis, prognosis and certain medical procedures. Taking advantage of the available annotated medical image datasets, many CNN-based approaches have been proposed for segmentation over the years. These conventional approaches lack appropriate supervised means to enhance the foreground/target regions relative to background at the feature level for improving the generalizability of these methods to obtain better performance across diverse imaging modalities. In this work, we introduce COMA-Net (COMplementary Attention guided bipolar refinement-based Network), which employs a complementary attention scheme between a pair of positive and negative refinement modules placed on top of two encoder structures for generating refined feature references for the decoder stage in a supervised manner. A four-way feature shifting operation is introduced in conjunction with a set of dilated convolutional layers so that it considers the spatial relationships across a wider footprint leading to better contextual feature extraction. We also formulate a novel Foreground-to-Background Ratio (FBR) index to highlight the differences in signal power between target region and background due to the refinement. Experimental results on five different publicly available medical image segmentation datasets, including BUSI, GLAS, ISIC-2018, MoNuSeg and CVC-ClinicDB reveal that on average, the proposed method can achieve an additional mean F1, IoU, precision, and recall score of +0.97%, +1.25%, +1.11%, and +0.22%, respectively over the state-of-the-art segmentation methods, suggesting its great potential for application on real-world patient image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪歪完成签到,获得积分10
1秒前
zhaozhao完成签到,获得积分10
3秒前
4秒前
闪电侠完成签到 ,获得积分10
5秒前
顾矜应助木木林采纳,获得10
5秒前
Ning发布了新的文献求助10
6秒前
6秒前
小方发布了新的文献求助10
8秒前
英姑应助自觉的无声采纳,获得10
9秒前
9秒前
10秒前
爱学习的孩纸完成签到 ,获得积分10
11秒前
酷波er应助yuan466125789采纳,获得10
12秒前
Ning完成签到,获得积分10
12秒前
123完成签到,获得积分20
12秒前
13秒前
小蝶发布了新的文献求助10
14秒前
14秒前
赘婿应助甘地采纳,获得10
15秒前
114555完成签到,获得积分10
15秒前
小蘑菇应助娇气的雁兰采纳,获得10
15秒前
123发布了新的文献求助10
15秒前
17秒前
小方完成签到,获得积分10
18秒前
水冰月发布了新的文献求助10
18秒前
芋圆不圆发布了新的文献求助10
18秒前
赘婿应助健壮的语雪采纳,获得10
22秒前
自觉的无声完成签到 ,获得积分10
23秒前
24秒前
25秒前
27秒前
喵姐发布了新的文献求助10
29秒前
典雅碧空应助迟迟采纳,获得10
29秒前
30秒前
S77发布了新的文献求助10
32秒前
轻松盼雁完成签到,获得积分10
33秒前
666发布了新的文献求助30
33秒前
韩凡发布了新的文献求助10
34秒前
37秒前
malele完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432